Advertisement

3D Bioprinting pp 229-242 | Cite as

3D Bioprinting and Differentiation of Primary Skeletal Muscle Progenitor Cells

  • Catherine Ngan
  • Anita Quigley
  • Cathal O’Connell
  • Magdalena Kita
  • Justin Bourke
  • Gordon G. Wallace
  • Peter Choong
  • Robert M. I. KapsaEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2140)

Abstract

Volumetric loss of skeletal muscle can occur through sports injuries, surgical ablation, trauma, motor or industrial accident, and war-related injury. Likewise, massive and ultimately catastrophic muscle cell loss occurs over time with progressive degenerative muscle diseases, such as the muscular dystrophies. Repair of volumetric loss of skeletal muscle requires replacement of large volumes of tissue to restore function. Repair of larger lesions cannot be achieved by injection of stem cells or muscle progenitor cells into the lesion in absence of a supportive scaffold that (1) provides trophic support for the cells and the recipient tissue environment, (2) appropriate differentiational cues, and (3) structural geometry for defining critical organ/tissue components/niches necessary or a functional outcome. 3D bioprinting technologies offer the possibility of printing orientated 3D structures that support skeletal muscle regeneration with provision for appropriately compartmentalized components ranging across regenerative to functional niches. This chapter includes protocols that provide for the generation of robust skeletal muscle cell precursors and methods for their inclusion into methacrylated gelatin (GelMa) constructs using 3D bioprinting.

Key words

3D bioprinting Skeletal muscle Myoblasts Tissue engineering 

Notes

Acknowledgements

The authors would like to thank the Australian National Fabrication Facility (ANFF), the Australian Research Council (CE140100012), and MTP Connect for supporting this work.

References

  1. 1.
    Nag AC, Foster JD (1981) Myogenesis in adult mammalian skeletal muscle in vitro. J Anat 132(Pt 1):1–18PubMedPubMedCentralGoogle Scholar
  2. 2.
    Snow MH (1977) Myogenic cell formation in regenerating rat skeletal muscle injured by mincing. I. A fine structural study. Anat Rec 188(2):181–199.  https://doi.org/10.1002/ar.1091880205CrossRefPubMedGoogle Scholar
  3. 3.
    Garg K, Ward CL, Hurtgen BJ, Wilken JM, Stinner DJ, Wenke JC et al (2015) Volumetric muscle loss: persistent functional deficits beyond frank loss of tissue. J Orthop Res 33(1):40–46.  https://doi.org/10.1002/jor.22730CrossRefPubMedGoogle Scholar
  4. 4.
    Grogan BF, Hsu JR, Skeletal Trauma Research C (2011) Volumetric muscle loss. J Am Acad Orthop Surg 19(Suppl 1):S35–S37CrossRefGoogle Scholar
  5. 5.
    Holmes B, Bulusu K, Plesniak M, Zhang LG (2016) A synergistic approach to the design, fabrication and evaluation of 3D printed micro and nano featured scaffolds for vascularized bone tissue repair. Nanotechnology 27(6):064001.  https://doi.org/10.1088/0957-4484/27/6/064001CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Lee YB, Polio S, Lee W, Dai G, Menon L, Carroll RS, Yoo SS (2010) Bio-printing of collagen and VEGF-releasing fibrin gel scaffolds for neural stem cell culture. Exp Neurol 223(2):645–652.  https://doi.org/10.1016/j.expneurol.2010.02.014CrossRefPubMedGoogle Scholar
  7. 7.
    Yurie H, Ikeguchi R, Aoyama T, Kaizawa Y, Tajino J, Ito A, Ohta S, Oda H, Takeuchi H, Akieda S, Tsuji M, Nakayama K, Matsuda S (2017) The efficacy of a scaffold-free Bio 3D conduit developed from human fibroblasts on peripheral nerve regeneration in a rat sciatic nerve model. PLoS One 12(2):e0171448.  https://doi.org/10.1371/journal.pone.0171448CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Chung JHY, Naficy S, Yue ZL, Kapsa R, Quigley A, Moulton SE et al (2013) Bioink properties and printability for extrusion printing living cells. Biomater Sci 1(7):763–773.  https://doi.org/10.1039/c3bm00012eCrossRefGoogle Scholar
  9. 9.
    Ferris CJ, Stevens LR, Gilmore KJ, Mume E, Greguric I, Kirchmajer DM et al (2015) Peptide modification of purified gellan gum. J Mater Chem B 3(6):1106–1115.  https://doi.org/10.1039/c4tb01727gCrossRefGoogle Scholar
  10. 10.
    Todaro M, Quigley A, Kita M, Chin J, Lowes K, Kornberg AJ et al (2007) Effective detection of corrected dystrophin loci in mdx mouse myogenic precursors. Hum Mutat 28(8):816–823.  https://doi.org/10.1002/humu.20494CrossRefPubMedGoogle Scholar
  11. 11.
    Lavasani M, Lu A, Thompson SD, Robbins PD, Huard J, Niedernhofer LJ (2013) Isolation of muscle-derived stem/progenitor cells based on adhesion characteristics to collagen-coated surfaces. Methods Mol Biol 976:53–65.  https://doi.org/10.1007/978-1-62703-317-6_5CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Motohashi N, Asakura Y, Asakura A (2014) Isolation, culture, and transplantation of muscle satellite cells. J Vis Exp (86).  https://doi.org/10.3791/50846
  13. 13.
    O’Connell CD, Di Bella C, Thompson F, Augustine C, Beirne S, Cornock R et al (2016) Development of the Biopen: a handheld device for surgical printing of adipose stem cells at a chondral wound site. Biofabrication 8(1):015019.  https://doi.org/10.1088/1758-5090/8/1/015019CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Catherine Ngan
    • 1
    • 2
    • 3
  • Anita Quigley
    • 2
    • 3
    • 4
    • 5
  • Cathal O’Connell
    • 2
    • 3
    • 5
  • Magdalena Kita
    • 2
    • 3
    • 4
  • Justin Bourke
    • 2
    • 3
    • 4
    • 5
  • Gordon G. Wallace
    • 2
    • 3
  • Peter Choong
    • 1
    • 2
    • 3
  • Robert M. I. Kapsa
    • 2
    • 3
    • 4
    • 5
    Email author
  1. 1.Department of Surgery, St Vincent’s Hospital MelbourneThe University of MelbourneMelbourneAustralia
  2. 2.@BioFab3D FacilitySt Vincent’s Hospital MelbourneMelbourneAustralia
  3. 3.ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research InstituteUniversity of WollongongWollongongAustralia
  4. 4.Clinical NeurosciencesSt. Vincent’s Hospital MelbourneMelbourneAustralia
  5. 5.Department of Medicine, St Vincent’s Hospital MelbourneUniversity of MelbourneMelbourneAustralia

Personalised recommendations