Advertisement

Investigating Alcohol Behavior and Physiology Using Drosophila melanogaster

  • Aliza K. De Nobrega
  • Kristine V. Luz
  • Katherine N. Lyons
  • Lisa C. LyonsEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2138)

Abstract

Drosophila melanogaster, the fruit fly, is one of the most versatile models for biomedical studies due to the economical husbandry, rapid generation time, and the array of tools for spatial and temporal gene manipulation. The relatively short lifespan of Drosophila (60–80 days) and the high degree of molecular conservation across species make Drosophila ideal to study the complexities of aging. Alcohol is the most abused drug worldwide and alcohol use disorders represent a significant public health problem and economic burden to individuals and society. Stereotypical alcohol-induced behaviors and the underlying molecular mechanisms are conserved from flies to humans making Drosophila a practical model for investigating the development of alcohol-induced behaviors and alcohol pathologies. Here, we outline how to assemble an efficient and controlled alcohol vapor delivery system, the FlyBar, and review paradigms and protocols for the assessment of alcohol-induced behaviors and physiology in Drosophila including the loss-of-righting reflex, sedation, tolerance, alcohol metabolism, and gut permeability.

Key words

Alcohol use disorder Drosophila Alcohol abuse Aging 

References

  1. 1.
    World Health Organization (2018) Global status report on alcohol and health 2018. Licence: CC BY-NC-SA 3.0 IGO. WHO, GenevaGoogle Scholar
  2. 2.
    Banks G, Nolan PM, Peirson SN (2016) Reciprocal interactions between circadian clocks and aging. Mamm Genome 27(7–8):332–340CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H et al (2012) A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380(9859):2224–2260CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Rehm J, Mathers C, Popova S, Thavorncharoensap M, Teerawattananon Y, Patra J (2009) Global burden of disease and injury and economic cost attributable to alcohol use and alcohol-use disorders. Lancet 373(9682):2223–2233CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Sacks JJ, Gonzales KR, Bouchery EE, Tomedi LE, Brewer RD (2015) 2010 National and state costs of excessive alcohol consumption. Am J Prev Med 49(5):e73–e79CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    SAMSHA (2014) Results from the 2013 National Survey on Drug Use and Health. Summary of national findings. NSDUH Series H-48 HHS Publication No. (SMA) 14–4863. Substance Abuse and Mental Health Services Administration, Rockville, MDGoogle Scholar
  7. 7.
    Han BH, Moore AA, Ferris R, Palamar JJ (2019) Binge drinking among older adults in the United States, 2015 to 2017. J Am Geriatr Soc.  https://doi.org/10.1111/jgs.16071
  8. 8.
    Han BH, Moore AA, Sherman SE, Palamar JJ (2018) Prevalence and correlates of binge drinking among older adults with multimorbidity. Drug Alcohol Depend 187:48–54CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Bitto A, Wang AM, Bennett CF, Kaeberlein M (2015) Biochemical genetic pathways that modulate aging in multiple species. Cold Spring Harb Perspect Med 5(11):pii: a025114.  https://doi.org/10.1101/cshperspect.a025114CrossRefGoogle Scholar
  10. 10.
    Cirelli C (2012) Brain plasticity, sleep and aging. Gerontology 58(5):441–445CrossRefGoogle Scholar
  11. 11.
    Grotewiel MS, Martin I, Bhandari P, Cook-Wiens E (2005) Functional senescence in Drosophila melanogaster. Ageing Res Rev 4(3):372–397CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Poddighe S, Bhat KM, Setzu MD, Solla P, Angioy AM, Marotta R et al (2013) Impaired sense of smell in a Drosophila Parkinson’s model. PLoS One 8(8):e73156.  https://doi.org/10.1371/journal.pone.0073156CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Sun Y, Yolitz J, Wang C, Spangler E, Zhan M, Zou S (2013) Aging studies in Drosophila melanogaster. Methods Mol Biol 1048:77–93CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Beramendi A, Peron S, Casanova G, Reggiani C, Cantera R (2007) Neuromuscular junction in abdominal muscles of Drosophila melanogaster during adulthood and aging. J Comp Neurol 501(4):498–508CrossRefGoogle Scholar
  15. 15.
    Cornelissen G, Otsuka K (2016) Chronobiology of aging: a mini-review. Gerontology 63(2):118–128CrossRefGoogle Scholar
  16. 16.
    Robertson M, Keene AC (2013) Molecular mechanisms of age-related sleep loss in the fruit fly – a mini-review. Gerontology 59(4):334–339CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Devineni AV, Heberlein U (2013) The evolution of Drosophila melanogaster as a model for alcohol research. Annu Rev Neurosci 36:121–138CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Narayanan AS, Rothenfluh A (2016) I believe I can Fly!: use of Drosophila as a model organism in neuropsychopharmacology research. Neuropsychopharmacology 41(6):1439–1446CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Egenriether SM, Chow ES, Krauth N, Giebultowicz JM (2015) Accelerated food source location in aging Drosophila. Aging Cell 14(5):916–918CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Eleftherianos I, Castillo JC (2012) Molecular mechanisms of aging and immune system regulation in Drosophila. Int J Mol Sci 13(8):9826–9844CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Rakshit K, Krishnan N, Guzik EM, Pyza E, Giebultowicz JM (2012) Effects of aging on the molecular circadian oscillations in Drosophila. Chronobiol Int 29(1):5–14CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Saitoe M, Horiuchi J, Tamura T, Ito N (2005) Drosophila as a novel animal model for studying the genetics of age-related memory impairment. Rev Neurosci 16(2):137–149CrossRefGoogle Scholar
  23. 23.
    Ratliff EP, Mauntz RE, Kotzebue RW, Gonzalez A, Achal M, Barekat A et al (2015) Aging and autophagic function influences the progressive decline of adult Drosophila behaviors. PLoS One 10(7):e0132768.  https://doi.org/10.1371/journal.pone.0132768CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Park A, Ghezzi A, Wijesekera TP, Atkinson NS (2017) Genetics and genomics of alcohol responses in Drosophila. Neuropharmacology 122:22–35.  https://doi.org/10.1016/j.neuropharm.2017.01.032CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Landayan D, Wolf FW (2015) Shared neurocircuitry underlying feeding and drugs of abuse in Drosophila. Biom J 38(6):496–509Google Scholar
  26. 26.
    Devineni AV, Heberlein U (2009) Preferential ethanol consumption in Drosophila models features of addiction. Curr Biol 19(24):2126–2132CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kaun KR, Azanchi R, Maung Z, Hirsh J, Heberlein U (2011) A Drosophila model for alcohol reward. Nat Neurosci 14(5):612–619CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Kaun KR, Devineni AV, Heberlein U (2012) Drosophila melanogaster as a model to study drug addiction. Hum Genet 131(6):959–975CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Rodan AR, Rothenfluh A (2010) The genetics of behavioral alcohol responses in Drosophila. Int Rev Neurobiol 91:25–51CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    De Nobrega AK, Lyons LC (2016) Circadian modulation of alcohol-induced sedation and recovery in male and female Drosophila. J Biol Rhythm 31(2):142–160CrossRefGoogle Scholar
  31. 31.
    Devineni AV, Heberlein U (2012) Acute ethanol responses in Drosophila are sexually dimorphic. Proc Natl Acad Sci U S A 109(51):21087–21092CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    van der Linde K, Lyons LC (2011) Circadian modulation of acute alcohol sensitivity but not acute tolerance in Drosophila. Chronobiol Int 28(5):397–406CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    De Nobrega AK, Mellers AP, Lyons LC (2017) Aging and circadian dysfunction increase alcohol sensitivity and exacerbate mortality in Drosophila melanogaster. Exp Gerontol 97:49–59CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    van der Linde K, Fumagalli E, Roman G, Lyons LC (2014) The FlyBar: administering alcohol to flies. J Vis Exp (87).  https://doi.org/10.3791/50442
  35. 35.
    Neckameyer WS, Bhatt P (2016) Protocols to study behavior in Drosophila. Methods Mol Biol 1478:303–320CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Pellegrino M, Nakagawa T, Vosshall LB (2010) Single sensillum recordings in the insects Drosophila melanogaster and Anopheles gambiae. J Vis Exp 36:1–5Google Scholar
  37. 37.
    Stocker H, Gallant P (2008) Getting started: an overview on raising and handling Drosophila. Methods Mol Biol 420:27–44CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Cowmeadow RB, Krishnan HR, Atkinson NS (2005) The slowpoke gene is necessary for rapid ethanol tolerance in Drosophila. Alcohol Clin Exp Res 29(10):1777–1786CrossRefGoogle Scholar
  39. 39.
    Scaplen KM, Mei NJ, Bounds HA, Song SL, Azanchi R, Kaun KR (2019) Automated real-time quantification of group locomotor activity in Drosophila melanogaster. Sci Rep 9:4427.  https://doi.org/10.1038/s41598-019-40952-5CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Crabbe JC, Phillips TJ, Belknap JK (2010) The complexity of alcohol drinking: studies in rodent genetic models. Behav Genet 40(6):737–750CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Berrigan D, Hercus M, Dagher H, Hoffmann AA (1997) Comparing different measures of heat resistance in selected lines of Drosophila melanogaster. J Insect Physiol 43(4):393–405CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Berrigan D, Partridge L (1997) Influence of temperature and activity on the metabolic rate of adult Drosophila melanogaster. Comp Biochem Physiol A Physiol 118(4):1301–1307CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Chakraborty TS, Gendron CM, Lyu Y, Munneke AS, DeMarco MN, Hoisington ZW et al (2019) Sensory perception of dead conspecifics induces aversive cues and modulates lifespan through serotonin in Drosophila. Nat Commun 10(1):2365.  https://doi.org/10.1038/s41467-019-10285-yCrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Gamsby JJ, Templeton EL, Bonvini LA, Wang W, Loros JJ, Dunlap JC et al (2013) The circadian Per1 and Per2 genes influence alcohol intake, reinforcement, and blood alcohol levels. Behav Brain Res 249:15–21CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Singh CM, Heberlein U (2000) Genetic control of acute ethanol-induced behaviors in Drosophila. Alcohol Clin Exp Res 24(8):1127–1136CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Borycz J, Borycz JA, Kubów A, Lloyd V et al (2008) Drosophila ABC transporter mutants white, brown and scarlet have altered contents and distribution of biogenic amines in the brain. J Exp Biol 211(Pt 21):3454–3466CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Chan RF, Lewellyn L, DeLoyht JM, Sennett K, Coffman S, Hewitt M et al (2014) Contrasting influences of Drosophila white/mini-white on ethanol sensitivity in two different behavioral assays. Alcohol Clin Exp Res 38(6):1582–1593CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Dwyer-Lindgren L, Flaxman AD, Ng M, Hansen GM, Murray CJ, Mokdad AH (2015) Drinking patterns in US counties from 2002 to 2012. Am J Public Health 105(6):1120–1127CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Kanny D, Brewer RD, Mesnick JB, Paulozzi LJ, Naimi TS, Lu H (2015) Vital signs: alcohol poisoning deaths – United States, 2010–2012. MMWR Morb Mortal Wkly Rep 63(53):1238–1242PubMedPubMedCentralGoogle Scholar
  50. 50.
    Perreau-Lenz S, Zghoul T, de Fonseca FR, Spanagel R, Bilbao A (2009) Circadian regulation of central ethanol sensitivity by the mPer2 gene. Addict Biol 14(3):253–259CrossRefGoogle Scholar
  51. 51.
    Berger KH, Heberlein U, Moore MS (2004) Rapid and chronic: two distinct forms of ethanol tolerance in Drosophila. Alcohol Clin Exp Res 28(10):1469–1480CrossRefGoogle Scholar
  52. 52.
    Scholz H, Ramond J, Singh CM, Heberlein U (2000) Functional ethanol tolerance in Drosophila. Neuron 28(1):261–271CrossRefGoogle Scholar
  53. 53.
    Moore MS, DeZazzo J, Luk AY, Tully T, Singh CM, Heberlein U (1998) Ethanol intoxication in Drosophila: genetic and pharmacological evidence for regulation by the cAMP signaling pathway. Cell 93(6):997–1007CrossRefGoogle Scholar
  54. 54.
    Gao B, Bataller R (2011) Alcoholic liver disease: pathogenesis and new therapeutic targets. Gastroenterology 141(5):1572–1585CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Forsyth CB, Voigt RM, Burgess HJ, Swanson GR, Keshavarzian A (2015) Circadian rhythms, alcohol and gut interactions. Alcohol 49(4):389–398CrossRefGoogle Scholar
  56. 56.
    Zhou Z, Zhong W (2017) Targeting the gut barrier for the treatment of alcoholic liver disease. Liver Res 1(4):197–207CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Bishehsari F, Magno E, Swanson G, Desai V, Voigt RM, Forsyth CB, Keshavarzian A (2017) Alcohol and gut-derived inflammation. Alcohol Res 38(2):163–171PubMedPubMedCentralGoogle Scholar
  58. 58.
    Cho YE, Song BJ (2018) Pomegranate prevents binge alcohol-induced gut leakiness and hepatic inflammation by suppressing oxidative and nitrative stress. Redox Biol 18:266–278CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Keshavarzian A, Farhadi A, Forsyth CB, Rangan J, Jakate S, Shaikh M et al (2009) Evidence that chronic alcohol exposure promotes intestinal oxidative stress, intestinal hyperpermeability and endotoxemia prior to development of alcoholic steatohepatitis in rats. J Hepatol 50(3):538–547CrossRefGoogle Scholar
  60. 60.
    Davis BT, Voigt RM, Shaikh M, Forsyth CB, Keshavarzian A (2017) CREB protein mediates alcohol-induced circadian disruption and intestinal permeability. Alcohol Clin Exp Res 41(12):2007–2014CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Summa KC, Voigt RM, Forsyth CB, Shaikh M, Cavanaugh K, Tang Y et al (2013) Disruption of the circadian clock in mice increases intestinal permeability and promotes alcohol-induced hepatic pathology and inflammation. PLoS One 8(6):e67102.  https://doi.org/10.1371/journal.pone.0067102CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Rera M, Clark RI, Walker DW (2012) Intestinal barrier dysfunction links metabolic and inflammatory markers of aging to death in Drosophila. Proc Natl Acad Sci U S A 109(52):21528–21533CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Barekat A, Gonzalez A, Mauntz RE, Kotzebue RW, Molina B, El-Mecharrafie N et al (2016) Using Drosophila as an integrated model to study mild repetitive traumatic brain injury. Sci Rep 6:25252.  https://doi.org/10.1038/srep25252CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Katzenberger RJ, Chtarbanova S, Rimkus SA, Fischer JA, Kaur G, Seppala JM et al (2015) Death following traumatic brain injury in Drosophila is associated with intestinal barrier dysfunction. elife 4.  https://doi.org/10.7554/eLife.04790
  65. 65.
    De Nobrega AK (2016) Alcohol sensitivity and alcohol-induced toxicity increases with aging in Drosophila. Exp Gerontol 97:49–59CrossRefGoogle Scholar
  66. 66.
    Martins RR, McCracken AW, Simons MJP, Henriques CM, Rera M (2018) How to catch a smurf? – Ageing and beyond… in vivo assessment of intestinal permeability in multiple model organisms. Bio Protoc 8(3):pii: e2722.  https://doi.org/10.21769/BioProtoc.2722CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Aliza K. De Nobrega
    • 1
  • Kristine V. Luz
    • 1
  • Katherine N. Lyons
    • 1
  • Lisa C. Lyons
    • 1
    Email author
  1. 1.Program in Neuroscience, Department of Biological ScienceFlorida State UniversityTallahasseeUSA

Personalised recommendations