Advertisement

MK-801 Treatment of Oligodendrocytes as a Cellular Model of Aging

  • Paul C. Guest
Protocol
  • 80 Downloads
Part of the Methods in Molecular Biology book series (MIMB, volume 2138)

Abstract

Cardiovascular-related accidents such as stroke are currently ranked as the second leading cause of death worldwide, and the risk of stroke increases dramatically with age. Aging results in structural and functional alterations of the oligodendrocytes which lead to loss of neuronal connectivity, cognitive deficits, and increased susceptibility to ischemic damage. Here, we have carried out proteomic profiling of MO3.13 oligodendrocyte cells following treatment with NMDA channel blocker MK-801 to increase our understanding of the mechanisms involved in brain aging, as well as those which render it more susceptible to ischemic damage. The main objective was to identify potential biomarkers which could be used to track disease or therapeutic effects.

Key words

Stroke Aging Neuron Oligodendrocyte Myelin sheath Synaptic connectivity 

References

  1. 1.
    World Health Organization (2012) Global Health estimates. World Health Organization, Geneva. http://www.who.int/healthinfo/global_burden_disease/en/Google Scholar
  2. 2.
    Owolabi MO, Akarolo-Anthony S, Akinyemi R, Arnett D, Gebregziabher M, Jenkins C et al (2015) The burden of stroke in Africa: a glance at the present and a glimpse into the future. Cardiovasc J Afr 26(2 Suppl 1):S27–S38CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    American Heart Association Statistics Committee and Stroke, Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD et al (2012) Heart disease and stroke statistics—2012 update: a report from the American Heart Association. Circulation 125(1):e2–e220.  https://doi.org/10.1161/CIR.0b013e31823ac046CrossRefGoogle Scholar
  4. 4.
    Brainin M, Feigin V, Bath PM, Collantes E, Martins S, Pandian J et al (2019) Multi-level community interventions for primary stroke prevention: a conceptual approach by the World Stroke Organization. Int J Stroke 9:1747493019873706.  https://doi.org/10.1177/1747493019873706CrossRefGoogle Scholar
  5. 5.
    Simons M, Trotter J (2007) Wrapping it up: the cell biology of myelination. Curr Opin Neurobiol 17(5):533–540CrossRefGoogle Scholar
  6. 6.
    Zhang K, Sejnowski TJ (2000) A universal scaling law between gray matter and white matter of cerebral cortex. Proc Natl Acad Sci U S A 97(10):5621–5626CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Ay H, Koroshetz WJ, Vangel M, Benner T, Melinosky C, Zhu M et al (2005) Conversion of ischemic brain tissue into infarction increases with age. Stroke 36(12):2632–2636CrossRefGoogle Scholar
  8. 8.
    Baltan S, Besancon EF, Mbow B, Ye Z, Hamner MA, Ransom BR (2008) White matter vulnerability to ischemic injury increases with age because of enhanced excitotoxicity. J Neurosci 28(6):1479–1489CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Baltan S (2014) Excitotoxicity and mitochondrial dysfunction underlie age-dependent ischemic white matter injury. Adv Neurobiol 11:151–170CrossRefGoogle Scholar
  10. 10.
    Micu I, Jiang Q, Coderre E, Ridsdale A, Zhang L, Woulfe J et al (2006) NMDA receptors mediate calcium accumulation in myelin during chemical ischaemia. Nature 439(7079):988–992CrossRefGoogle Scholar
  11. 11.
    Teyler TJ (1987–1988) Long-term potentiation and memory. Int J Neurol 21-22:163–171PubMedGoogle Scholar
  12. 12.
    Peters A (1966) The node of Ranvier in the central nervous system. Q J Exp Physiol Cogn Med Sci 51(3):229–236PubMedGoogle Scholar
  13. 13.
    Baltan S (2016) Age-specific localization of NMDA receptors on oligodendrocytes dictates axon function recovery after ischemia. Neuropharmacology 110(Pt B):626–632CrossRefGoogle Scholar
  14. 14.
    Maccarrone G, Rewerts C, Lebar M, Turck CW, Martins-De-Souza D (2013) Proteome profiling of peripheral mononuclear cells from human blood. Proteomics 13(5):893–897CrossRefGoogle Scholar
  15. 15.
    Klement K, Melle C, Murzik U, Diekmann S, Norgauer J, Hemmerich P (2012) Accumulation of annexin A5 at the nuclear envelope is a biomarker of cellular aging. Mech Ageing Dev 133(7):508–522CrossRefGoogle Scholar
  16. 16.
    Mennecier F, Dreyfus JC (1974) Molecular aging of fructose-bisphosphate aldolase in tissues of rabbit and man. Biochim Biophys Acta 364(2):320–326CrossRefGoogle Scholar
  17. 17.
    Morohoshi K, Ohbayashi M, Patel N, Chong V, Bird AC, Ono SJ (2012) Identification of anti-retinal antibodies in patients with age-related macular degeneration. Exp Mol Pathol 93(2):193–199CrossRefGoogle Scholar
  18. 18.
    Cao P, Zhang J, Huang Y, Fang Y, Lyu J, Shen Y (2019) The age-related changes and differences in energy metabolism and glutamate-glutamine recycling in the d-gal-induced and naturally occurring senescent astrocytes in vitro. Exp Gerontol 118:9–18CrossRefGoogle Scholar
  19. 19.
    Csiszar A, Wang M, Lakatta EG, Ungvari Z (1985) Inflammation and endothelial dysfunction during aging: role of NF-kappaB. J Appl Physiol 105(4):1333–1341CrossRefGoogle Scholar
  20. 20.
    Boraldi F, Bini L, Liberatori S, Armini A, Pallini V, Tiozzo R et al (2003) Proteome analysis of dermal fibroblasts cultured in vitro from human healthy subjects of different ages. Proteomics 3(6):917–929CrossRefGoogle Scholar
  21. 21.
    McClung JK, Jupe ER, Liu XT, Dell’Orco RT (1995) Prohibitin: potential role in senescence, development, and tumor suppression. Exp Gerontol 30(2):99–124CrossRefGoogle Scholar
  22. 22.
    Doria G, Frasca D (2000) Genetic factors in immunity and aging. Vaccine 18(16):1591–1595CrossRefGoogle Scholar
  23. 23.
    McReynolds S, Dzieciatkowska M, McCallie BR, Mitchell SD, Stevens J, Hansen K et al (2012) Impact of maternal aging on the molecular signature of human cumulus cells. Fertil Steril 98(6):1574–1580.e5.  https://doi.org/10.1016/j.fertnstert.2012.08.012CrossRefPubMedGoogle Scholar
  24. 24.
    Weitzdörfer R, Höger H, Shim KS, Cekici L, Pollak A, Lubec G (2008) Changes of hippocampal signaling protein levels during postnatal brain development in the rat. Hippocampus 18(8):807–813CrossRefGoogle Scholar
  25. 25.
    Parrado J, Bougria M, Ayala A, Castaño A, Machado A (1999) Effects of aging on the various steps of protein synthesis: fragmentation of elongation factor 2. Free Radic Biol Med 26(3–4):362–370CrossRefGoogle Scholar
  26. 26.
    Peng YT, Chen P, Ouyang RY, Song L (2015) Multifaceted role of prohibitin in cell survival and apoptosis. Apoptosis 20(9):1135–1149CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Yang S, Liu T, Li S, Zhang X, Ding Q, Que H et al (2008) Comparative proteomic analysis of brains of naturally aging mice. Neuroscience 154(3):1107–1120CrossRefGoogle Scholar
  28. 28.
    Aitbaev KA, Murkamilov IT, Fomin VV (2019) Molecular mechanisms of aging: the role of oxidative stress and epigenetic modifications. Adv Gerontol 32(1–2):20–28PubMedGoogle Scholar
  29. 29.
    Alfadda AA, Benabdelkamel H, Masood A, Moustafa A, Sallam R, Bassas A et al (2013) Proteomic analysis of mature adipocytes from obese patients in relation to aging. Exp Gerontol 48(11):1196–1203CrossRefGoogle Scholar
  30. 30.
    Malhas AN, Lee CF, Vaux DJ (2009) Lamin B1 controls oxidative stress responses via Oct-1. J Cell Biol 184(1):45–55CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Hord JM, Botchlett R, Lawler JM (2016) Age-related alterations in the sarcolemmal environment are attenuated by lifelong caloric restriction and voluntary exercise. Exp Gerontol 83:148–157CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Wasik U, Schneider G, Mietelska-Porowska A, Mazurkiewicz M, Fabczak H, Weis S et al (2013) Calcyclin binding protein and Siah-1 interacting protein in Alzheimer’s disease pathology: neuronal localization and possible function. Neurobiol Aging 34(5):1380–1388CrossRefGoogle Scholar
  33. 33.
    Poon HF, Shepherd HM, Reed TT, Calabrese V, Stella AM, Pennisi G et al (2006) Proteomics analysis provides insight into caloric restriction mediated oxidation and expression of brain proteins associated with age-related impaired cellular processes: mitochondrial dysfunction, glutamate dysregulation and impaired protein synthesis. Neurobiol Aging 27(7):1020–1034CrossRefGoogle Scholar
  34. 34.
    Ching TT, Paal AB, Mehta A, Zhong L, Hsu AL (2010) drr-2 encodes an eIF4H that acts downstream of TOR in diet-restriction-induced longevity of C. elegans. Aging Cell 9(4):545–557CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Opii WO, Joshi G, Head E, Milgram NW, Muggenburg BA, Klein JB et al (2008) Proteomic identification of brain proteins in the canine model of human aging following a long-term treatment with antioxidants and a program of behavioral enrichment: relevance to Alzheimer’s disease. Neurobiol Aging 29(1):51–70CrossRefGoogle Scholar
  36. 36.
    Łoniewska B, Adler G, Gumprecht J, Grzeszczak W, Kaczmarczyk M, Bińczak-Kuleta A et al (2012) 1936A→G (I646 V) polymorphism in the AKAP10 gene encoding A-kinase-anchoring protein 10 in very long-lived poles is similar to that in newborns. Exp Aging Res 38(5):584–592CrossRefGoogle Scholar
  37. 37.
    Fan X, Cui L, Zeng Y, Song W, Gaur U, Yang M (2019) 14-3-3 proteins are on the crossroads of cancer, aging, and age-related neurodegenerative disease. Int J Mol Sci 20(14). pii: E3518.  https://doi.org/10.3390/ijms20143518
  38. 38.
    Chiocchetti A, Zhou J, Zhu H, Karl T, Haubenreisser O, Rinnerthaler M et al (2007) Ribosomal proteins Rpl10 and Rps6 are potent regulators of yeast replicative life span. Exp Gerontol 42(4):275–286CrossRefGoogle Scholar
  39. 39.
    Lee JH, Khadka P, Baek SH, Chung IK (2010) CHIP promotes human telomerase reverse transcriptase degradation and negatively regulates telomerase activity. J Biol Chem 285(53):42033–42045CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Mhyre TR, Loy R, Tariot PN, Profenno LA, Maguire-Zeiss KA, Zhang D et al (2008) Proteomic analysis of peripheral leukocytes in Alzheimer’s disease patients treated with divalproex sodium. Neurobiol Aging 29(11):1631–1643CrossRefPubMedGoogle Scholar
  41. 41.
    Meshorer E, Soreq H (2002) Pre-mRNA splicing modulations in senescence. Aging Cell 1(1):10–16CrossRefPubMedGoogle Scholar
  42. 42.
    Lehmann SG, Bourgoin-Voillard S, Seve M, Rachidi W (2017) Tubulin beta-3 chain as a new candidate protein biomarker of human skin aging: a preliminary study. Oxidative Med Cell Longev 2017:5140360.  https://doi.org/10.1155/2017/5140360CrossRefGoogle Scholar
  43. 43.
    Kobiela T, Milner-Krawczyk M, Pasikowska-Piwko M, Bobecka-Wesołowska K, Eris I, Święszkowski W et al (2018) The effect of anti-aging peptides on mechanical and biological properties of HaCaT keratinocytes. Int J Pept Res Ther 24(4):577–587CrossRefGoogle Scholar
  44. 44.
    Gao X, Teng Y, Luo J, Huang L, Li M, Zhang Z (2014) The survival motor neuron gene smn-1 interacts with the U2AF large subunit gene uaf-1 to regulate Caenorhabditis elegans lifespan and motor functions. RNA Biol 11(9):1148–1160CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Klaiman G, Petzke TL, Hammond J, Leblanc AC (2008) Targets of caspase-6 activity in human neurons and Alzheimer disease. Mol Cell Proteomics 7(8):1541–1555CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Duncan FE, Jasti S, Paulson A, Kelsh JM, Fegley B, Gerton JL (2017) Age-associated dysregulation of protein metabolism in the mammalian oocyte. Aging Cell 16(6):1381–1393CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Das A, Bortner JD Jr, Aliaga CA, Baker A, Stanley A, Stanley BA et al (2013) Changes in proteomic profiles in different prostate lobes of male rats throughout growth and development and aging stages of the life span. Prostate 73(4):363–375CrossRefGoogle Scholar
  48. 48.
    Rapoport S, Primiani CT, Chen CT, Ahn K, Ryan VH (2015) Coordinated expression of phosphoinositide metabolic genes during development and aging of human dorsolateral prefrontal cortex. PLoS One 10(7):e0132675.  https://doi.org/10.1371/journal.pone.0132675CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Cassoli JS, Iwata K, Steiner J, Guest PC, Turck CW, Nascimento JM et al (2016) Effect of MK-801 and clozapine on the proteome of cultured human oligodendrocytes. Front Cell Neurosci 10:52.  https://doi.org/10.3389/fncel.2016.00052CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Maccarrone G, Lebar M, Martins-de-Souza D (2014) Brain quantitative proteomics combining GeLC-MS and isotope-coded protein labeling (ICPL). Methods Mol Biol 1156:175–185CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Paul C. Guest
    • 1
  1. 1.Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of BiologyUniversity of Campinas (UNICAMP)CampinasBrazil

Personalised recommendations