Proteomic Analysis of Rat Hippocampus for Studies of Cognition and Memory Loss with Aging

  • Paul C. Guest
  • Hassan Rahmoune
  • Daniel Martins-de-Souza
Part of the Methods in Molecular Biology book series (MIMB, volume 2138)


This chapter describes a protocol for proteomic profiling of the rat hippocampal proteome using a combination of liquid chromatography tandem mass spectrometry (LC-MS/MS) and data analysis to determine the cellular location of the identified proteins. In the example given, many of these proteins were localized in the plasma membrane and nucleus. These could be of interest in further studies of neurological and neurodegenerative disorders linked with hippocampal dysfunction, such as aging, major depression, and Alzheimer’s disease.

Key words

Alzheimer’s disease Major depression Memory Cognition Hippocampus Proteome Mass spectrometry 


  1. 1.
    Budson AE, Solomon PR (2015) Memory loss, Alzheimer’s disease, and dementia: a practical guide for clinicians, 2nd edn. Elsevier, Amsterdam. ISBN-10: 9780323286619Google Scholar
  2. 2.
    Lashley T, Schott JM, Weston P, Murray CE, Wellington H, Keshavan A et al (2018) Molecular biomarkers of Alzheimer’s disease: progress and prospects. Dis Model Mech 11(5). pii: dmm031781.
  3. 3.
    Alzheimer’s Association (2016) 2016 Alzheimer’s disease facts and figures. Alzheimer Dement 12:459–509CrossRefGoogle Scholar
  4. 4.
    Prince M, Wimo A, Guerchet M, Ali GC, Wu YT, Prina M et al (2015) Alzheimer’s Disease International World Alzheimer Report 2015: the global impact of dementia, an analysis of prevalence, incidence, cost and trends. London, 2015.
  5. 5.
    Wimo A, Guerchet M, Ali GC, Wu YT, Prina AM, Winblad B et al (2017) The worldwide costs of dementia 2015 and comparisons with 2010. Alzheimers Dement 13:1–7CrossRefGoogle Scholar
  6. 6.
    Jeong S (2017) Molecular and cellular basis of neurodegeneration in Alzheimer’s disease. Mol Cells 40(9):613–620PubMedPubMedCentralGoogle Scholar
  7. 7.
    Calderon-Garcidueñas AL, Duyckaerts C (2017) Alzheimer disease. Handb Clin Neurol 145:325–337CrossRefGoogle Scholar
  8. 8.
    Lacor PN, Buniel MC, Furlow PW, Clemente AS, Velasco PT, Wood M et al (2007) Abeta oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. J Neurosci 27(4):796–807CrossRefGoogle Scholar
  9. 9.
    Ma RH, Zhang Y, Hong XY, Zhang JF, Wang JZ, Liu GP (2017) Role of microtubule-associated protein tau phosphorylation in Alzheimer’s disease. J Huazhong Univ Sci Technolog Med Sci 37(3):307–312CrossRefGoogle Scholar
  10. 10.
    Perez Ortiz JM, Swerdlow RH (2019) Mitochondrial dysfunction in Alzheimer’s disease: role in pathogenesis and novel therapeutic opportunities. Br J Pharmacol 176:3489. Scholar
  11. 11.
    Oliver DMA, Reddy PH (2019) Small molecules as therapeutic drugs for Alzheimer’s disease. Mol Cell Neurosci 96:47–62CrossRefGoogle Scholar
  12. 12.
    Li M, Long C, Yang L (2015) Hippocampal-prefrontal circuit and disrupted functional connectivity in psychiatric and neurodegenerative disorders. Biomed Res Int 2015:810548. Scholar
  13. 13.
    Sampath D, Sathyanesan M, Newton SS (2017) Cognitive dysfunction in major depression and Alzheimer’s disease is associated with hippocampal-prefrontal cortex dysconnectivity. Neuropsychiatr Dis Treat 13:1509–1519CrossRefGoogle Scholar
  14. 14.
    Ross JA, Gliebus G, Van Bockstaele EJ (2018) Stress induced neural reorganization: a conceptual framework linking depression and Alzheimer’s disease. Prog Neuropsychopharmacol Biol Psychiatry 85:136–151CrossRefGoogle Scholar
  15. 15.
    de Leon MJ, Convit A, DeSanti S, Golomb J, Tarshish C, Rusinek H et al (1995) The hippocampus in aging and Alzheimer’s disease. Neuroimaging Clin N Am 5(1):1–17PubMedGoogle Scholar
  16. 16.
    Leuner B, Gould E (2010) Structural plasticity and hippocampal function. Annu Rev Psychol 61:111–140, C1–C3CrossRefGoogle Scholar
  17. 17.
    Fellgiebel A, Yakushev I (2011) Diffusion tensor imaging of the hippocampus in MCI and early Alzheimer’s disease. J Alzheimers Dis 26(Suppl 3):257–262CrossRefGoogle Scholar
  18. 18.
    Wingenfeld K, Wolf OT (2014) Stress, memory, and the hippocampus. Front Neurol Neurosci 34:109–120CrossRefGoogle Scholar
  19. 19.
    Van Dam D, De Deyn PP (2011) Animal models in the drug discovery pipeline for Alzheimer’s disease. Br J Pharmacol 164(4):1285–1300CrossRefGoogle Scholar
  20. 20.
    Neha, Sodhi RK, Jaggi AS, Singh N (2014) Animal models of dementia and cognitive dysfunction. Life Sci 109(2):73–86CrossRefGoogle Scholar
  21. 21.
    Ferreira E, Shaw DM, Oddo S (2016) Identification of learning-induced changes in protein networks in the hippocampi of a mouse model of Alzheimer’s disease. Transl Psychiatry 6(7):e849. Scholar
  22. 22.
    Li N, Hu P, Xu T, Chen H, Chen X, Hu J et al (2017) iTRAQ-based proteomic analysis of APPSw,Ind mice provides insights into the early changes in Alzheimer’s disease. Curr Alzheimer Res 14(10):1109–1122CrossRefGoogle Scholar
  23. 23.
    Kim DK, Park J, Han D, Yang J, Kim A, Woo J et al (2018) Molecular and functional signatures in a novel Alzheimer’s disease mouse model assessed by quantitative proteomics. Mol Neurodegener 13(1):2. Scholar
  24. 24.
    Xiong F, Ge W, Ma C (2019) Quantitative proteomics reveals distinct composition of amyloid plaques in Alzheimer’s disease. Alzheimers Dement 15(3):429–440CrossRefGoogle Scholar
  25. 25.
    Hamezah HS, Durani LW, Yanagisawa D, Ibrahim NF, Aizat WM, Bellier JP et al (2018) Proteome profiling in the hippocampus, medial prefrontal cortex, and striatum of aging rat. Exp Gerontol 111:53–64CrossRefGoogle Scholar
  26. 26.
    Yang X, Levin Y, Rahmoune H, Ma D, Schöffmann S, Umrania Y et al (2011) Comprehensive two-dimensional liquid chromatography mass spectrometric profiling of the rat hippocampal proteome. Proteomics 11(3):501–505CrossRefGoogle Scholar
  27. 27.
  28. 28.
  29. 29.
    Paxinos G, Watson C (2013) The rat brain in stereotaxic coordinates, 7th edn. Academic Press, London. ISBN-10: 0123919495Google Scholar
  30. 30.
    Levin Y, Jaros JA, Schwarz E, Bahn S (2010) Multidimensional protein fractionation of blood proteins coupled to data-independent nanoLC-MS/MS analysis. J Proteome 73(3):689–695CrossRefGoogle Scholar
  31. 31.
    Li GZ, Vissers JP, Silva JC, Golick D, Gorenstein MV, Geromanos SJ (2009) Database searching and accounting of multiplexed precursor and product ion spectra from the data independent analysis of simple and complex peptide mixtures. Proteomics 9(6):1696–1719CrossRefGoogle Scholar
  32. 32.
    Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M (1999) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 27(1):29–34CrossRefGoogle Scholar
  33. 33.
    Vastrik I, D’Eustachio P, Schmidt E, Gopinath G, Croft D, de Bono B et al (2007) Reactome: a knowledge base of biologic pathways and processes. Genome Biol 8(3):R39. Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Paul C. Guest
    • 1
  • Hassan Rahmoune
    • 2
  • Daniel Martins-de-Souza
    • 1
    • 3
    • 4
  1. 1.Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of BiologyUniversity of Campinas (UNICAMP)CampinasBrazil
  2. 2.Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeUK
  3. 3.Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)São PauloBrazil
  4. 4.UNICAMP Neurobiology CenterCampinasBrazil

Personalised recommendations