Advertisement

Quantitative Assays of Plasma Apolipoproteins

  • Anne PoljakEmail author
  • Mark W. Duncan
  • Tharusha Jayasena
  • Perminder S. Sachdev
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2138)

Abstract

The apolipoproteins are well known for their roles in both health and disease, as components of plasma lipoprotein particles, such as high-density lipoprotein (HDL), low-density lipoprotein (LDL), very-low-density lipoprotein (VLDL), chylomicrons, and metabolic, vascular- and inflammation-related disorders, such as cardiovascular disease, atherosclerosis, metabolic syndrome, and diabetes. Increasingly, their roles in neurovascular and neurodegenerative disorders are also being elucidated. They play major roles in lipid and cholesterol transport between blood and organs and are, therefore, critical to maintenance and homeostasis of the lipidome, with apolipoprotein–lipid interactions, including cholesterol, fatty acids, triglycerides, phospholipids, and isoprostanes. Further, they have important pleiotropic roles related to aging and longevity, which are largely managed through their many structural variants, including multiple isoforms, and a diversity of post-translational modifications. Consequently, tools for the characterization and accurate quantification of apolipoproteins, including their diverse array of variant forms, are required to understand their salutary and disease related roles. In this chapter we outline three distinct quantitative approaches suitable for targeting apolipoproteins: (1) multiplex immunoassays, (2) mass spectrometric immunoassay, and (3) multiple reaction monitoring, mass spectrometric quantification. We also discuss management of pre-analytical and experimental design variables.

Key words

Apolipoproteins Cardiovascular disease Atherosclerosis Metabolic syndrome Diabetes Multiplex immunoassay Mass spectrometric immunoassay Multiple reaction monitoring 

Notes

Acknowledgements

We thank Dr. Paul Guest for his assistance in the formatting of this chapter. This work was performed with the support of the NH&MRC program grant to Prof Perminder Sachdev, and we thank the Rebecca Cooper Medical Research Foundation and the Sachdev Foundation for their ongoing research support.

References

  1. 1.
    Song F, Poljak A, Crawford J, Kochan NA, Wen W, Cameron B et al (2012) Plasma apolipoprotein levels are associated with cognitive status and decline in a community cohort of older individuals. PLoS One 7(6):e34078.  https://doi.org/10.1371/journal.pone.0034078CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Song F, Poljak A, Kochan NA, Raftery M, Brodaty H, Smythe GA et al (2014) Plasma protein profiling of mild cognitive impairment and Alzheimer’s disease using iTRAQ quantitative proteomics. Proteome Sci 12(1):5.  https://doi.org/10.1186/1477-5956-12-5CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Muffat J, Walker DW (2010) Apolipoprotein D: an overview of its role in aging and age-related diseases. Cell Cycle 9(2):269–273CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Trougakos IP, Gonos ES (2002) Clusterin/apolipoprotein J in human aging and cancer. Int J Biochem Cell Biol 34(11):1430–1448CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Dong LM, Wilson C, Wardell MR, Simmons T, Mahley RW, Weisgraber KH et al (1994) Human apolipoprotein E. role of arginine 61 in mediating the lipoprotein preferences of the E3 and E4 isoforms. J Biol Chem 269:22358–22365PubMedPubMedCentralGoogle Scholar
  6. 6.
    Borhani DW, Rogers DP, Engler JA, Brouillette CG (1997) Crystal structure of truncated human apolipoprotein A-I suggests a lipid-bound conformation. Proc Natl Acad Sci U S A 94(23):12291–12296CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Bouma B, de Groot PG, van den Elsen JM, Ravelli RB, Schouten A, Simmelink MJ et al (1999) Adhesion mechanism of human beta(2)-glycoprotein I to phospholipids based on its crystal structure. EMBO J 18(23):5166–5174CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Rozek A, Sparrow JT, Weisgraber KH, Cushley RJ (1999) Conformation of human apolipoprotein C-I in a lipid-mimetic environment determined by CD and NMR spectroscopy. Biochemistry 38(44):14475–14484CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Ye Q, Rahman MN, Koschinsky ML, Jia Z (2001) High-resolution crystal structure of apolipoprotein(a) kringle IV type 7: insights into ligand binding. Protein Sci 10(6):1124–1129CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    MacRaild CA, Howlett GJ, Gooley PR (2004) The structure and interactions of human apolipoprotein C-II in dodecyl phosphocholine. Biochemistry 43(25):8084–8093CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Eichinger A, Nasreen A, Kim HJ, Skerra A (2007) Structural insight into the dual ligand specificity and mode of high density lipoprotein association of apolipoprotein D. J Biol Chem 282(42):31068–31075CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Gangabadage CS, Zdunek J, Tessari M, Nilsson S, Olivecrona G, Wijmenga SS (2008) Structure and dynamics of human apolipoprotein CIII. J Biol Chem 283(25):17416–17427CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Christoffersen C, Obinata H, Kumaraswamy SB, Galvani S, Ahnström J, Sevvana M et al (2011) Endothelium-protective sphingosine-1-phosphate provided by HDL-associated apolipoprotein M. Proc Natl Acad Sci U S A 108:9613–9618CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Deng X, Morris J, Dressmen J, Tubb MR, Tso P, Jerome WG et al (2012) The structure of dimeric apolipoprotein A-IV and its mechanism of self-association. Structure 20(5):767–779CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Lu J, Yu Y, Zhu I, Cheng Y, Sun PD (2014) Structural mechanism of serum amyloid A-mediated inflammatory amyloidosis. Proc Natl Acad Sci U S A 111(14):5189–5194CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    O’Bryant SE, Gupta V, Henriksen K, Edwards M, Jeromin A, Lista S et al (2015) Guidelines for the standardization of preanalytic variables for blood-based biomarker studies in Alzheimer’s disease research. Alzheimers Dement 11(5):549–560CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Wong MW, Braidy N, Poljak A, Pickford R, Thambisetty M, Sachdev PS (2017) Dysregulation of lipids in Alzheimer’s disease and their role as potential biomarkers. Alzheimers Dement 13(7):810–827CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Choi JH, Jeong E, Youn BS, Kim MS (2018) Distinct Ultradian rhythms in plasma Clusterin concentrations in lean and obese Korean subjects. Endocrinol Metab (Seoul) 33(2):245–251CrossRefGoogle Scholar
  19. 19.
    Pan X, Munshi MK, Iqbal J, Queiroz J, Sirwi AA, Shah S et al (2013) Circadian regulation of intestinal lipid absorption by apolipoprotein AIV involves forkhead transcription factors A2 and O1 and microsomal triglyceride transfer protein. J Biol Chem 288(28):20464–20476CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Eick GN, Kowal P, Barrett T, Thiele EA, Snodgrass JJ (2017) Enzyme-linked immunoassay-based quantitative measurement of apolipoprotein B (ApoB) in dried blood spots, a biomarker of cardiovascular disease risk. Biodemography Soc Biol 63(2):116–130CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Rebholz SL, Melchior JT, Welge JA, Remaley AT, Davidson W, Woollett LA (2017) Effects of multiple freeze/thaw cycles on measurements of potential novel biomarkers associated with adverse pregnancy outcomes. J Clin Lab Med 29(1).  https://doi.org/10.16966/2572-9578.107
  22. 22.
    Muenchhoff J, Song F, Poljak A, Crawford JD, Mather KA, Kochan NA et al (2017) Plasma apolipoproteins and physical and cognitive health in very old individuals. Neurobiol Aging 55:49–60CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Nelson RW, Krone JR, Bieber AL, Williams P (1995) Mass spectrometric immunoassay. Anal Chem 67:1153–1158CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Yassine H, Borges CR, Schaab MR, Billheimer D, Stump C, Reaven P et al (2013) Mass spectrometric immunoassay and MRM as targeted MS-based quantitative approaches in biomarker development: potential applications to cardiovascular disease and diabetes. Proteomics Clin Appl 7(7–8):528–540CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Kiernan UA, Phillips DA, Trenchevska O, Nedelkov D (2011) Quantitative mass spectrometry evaluation of human retinol binding protein 4 and related variants. PLoS One 6:e17282.  https://doi.org/10.1371/journal.pone.0017282CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Trenchevska O, Kamcheva E, Nedelkov D (2010) Mass spectrometric immunoassay for quantitative determination of protein biomarker isoforms. J Proteome Res 9(11):5969–5973CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Jennings L, Van Deerlin VM, Gulley ML, College of American Pathologists Molecular Pathology Resource Committee (2009) Recommended principles and practices for validating clinical molecular pathology tests. Arch Pathol Lab Med 133(5):743–755PubMedPubMedCentralGoogle Scholar
  28. 28.
    Delatour T, Mottier P, Gremaud E (2007) Limits of suspicion, recognition and confirmation as concepts that account for the confirmation transitions at the detection limit for quantification by liquid chromatography-tandem mass spectrometry. J Chromatogr A 1169(1–2):103–110CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Armbruster DA, Pry T (2008) Limit of blank, limit of detection and limit of quantitation. Clin Biochem Rev 29(Suppl 1):S49–S52PubMedPubMedCentralGoogle Scholar
  30. 30.
    Niederkofler EE, Tubbs KA, Gruber K, Nedelkov D, Kiernan UA, Williams P et al (2001) Determination of beta-2 microglobulin levels in plasma using a high-throughput mass spectrometric immunoassay system. Anal Chem 73(4):3294–3299CrossRefGoogle Scholar
  31. 31.
    Nelson RW, Nedelkov D, Tubbs KA, Kiernan UA (2004) Quantitative mass spectrometric immunoassay of insulin like growth factor 1. J Proteome Res 3(4):851–855CrossRefGoogle Scholar
  32. 32.
    Kiernan UA, Addobbati R, Nedelkov D, Nelson RW (2006) Quantitative multiplexed C-reactive protein mass spectrometric immunoassay. J Proteome Res 5(7):1682–1687CrossRefGoogle Scholar
  33. 33.
    Niederkofler EE, Kiernan UA, O’Rear J, Menon S, Saghir S, Protter AA et al (2008) Detection of endogenous B-type natriuretic peptide at very low concentrations in patients with heart failure. Circ Heart Fail 1(4):258–264CrossRefGoogle Scholar
  34. 34.
    Oran PE, Jarvis JW, Borges CR, Sherma ND, Nelson RW (2011) Mass spectrometric immunoassay of intact insulin and related variants for population proteomics studies. Proteomics Clin Appl 5(7–8):454–459CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Huber L (2007) Validation and qualification in analytical laboratories, 2nd edn. CRC Press, Boca Raton, FL. ISBN-10:084938267XCrossRefGoogle Scholar
  36. 36.
    Ceglarek U, Dittrich J, Becker S, Baumann F, Kortz L, Thiery J (2013) Quantification of seven apolipoproteins in human plasma by proteotypic peptides using fast LC-MS/MS. Proteomics Clin Appl 7(11–12):794–801CrossRefGoogle Scholar
  37. 37.
    von Zychlinski A, Williams M, McCormick S, Kleffmann T (2014) Absolute quantification of apolipoproteins and associated proteins on human plasma lipoproteins. J Proteome 106:181–190CrossRefGoogle Scholar
  38. 38.
    van den Broek I, Romijn FP, Nouta J, van der Laarse A, Drijfhout JW, Smit NP et al (2016) Automated multiplex LC-MS/MS assay for quantifying serum apolipoproteins A-I, B, C-I, C-II, C-III, and E with qualitative apolipoprotein E phenotyping. Clin Chem 62(1):188–197CrossRefGoogle Scholar
  39. 39.
    Toth CA, Kuklenyik Z, Jones JI, Parks BA, Gardner MS, Schieltz DM et al (2017) On-column trypsin digestion coupled with LC-MS/MS for quantification of apolipoproteins. J Proteome 150:258–267CrossRefGoogle Scholar
  40. 40.
    Shi J, Zheng YZ, Sin DD, DeMarco ML (2018) A streamlined method for quantification of apolipoprotein A1 in human plasma by LC-MS/MS. Clin Chem 64(12):1782–1784CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Wagner R, Dittrich J, Thiery J, Ceglarek U, Burkhardt R (2019) Simultaneous LC/MS/MS quantification of eight apolipoproteins in normal and hypercholesterolemic mouse plasma. J Lipid Res 60(4):900–908CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Hirtz C, Vialaret J, Nouadje G, Schraen S, Benlian P, Mary S et al (2016) Development of new quantitative mass spectrometry and semi-automatic isofocusing methods for the determination of apolipoprotein E typing. Clin Chim Acta 454:33–38CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Pan Y, Zhou H, Mahsut A, Rohm RJ, Berejnaia O, Price O et al (2014) Static and turnover kinetic measurement of protein biomarkers involved in triglyceride metabolism including apoB48 and apoA5 by LC/MS/MS. J Lipid Res 55(6):1179–1187CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Jayasena T, Poljak A, Braidy N, Zhong L, Rowlands B, Muenchhoff J et al (2016) Application of targeted mass spectrometry for the quantification of Sirtuins in the central nervous system. Sci Rep 6:35391.  https://doi.org/10.1038/srep35391CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Marks V, Cantor T, Mesko D, Pullmann R, Nosalova G (2002) Differential diagnosis by laboratory medicine: a quick reference guide for physicians. Springer, New York, NY. ISBN: 9783540430575CrossRefGoogle Scholar
  46. 46.
    Chistiakov DA, Orekhov AN, Bobryshev YV (2016) ApoA1 and ApoA1-specific self-antibodies in cardiovascular disease. Lab Investig 96(7):708–718CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Sengupta MB, Mukhopadhyay D (2016) Possible role of apolipoprotein A1 in healing and cell death after neuronal injury. Front Biosci (Elite Ed) 8:460–477Google Scholar
  48. 48.
    Yang M, Liu Y, Dai J, Li L, Ding X, Xu Z (2018) Apolipoprotein A-II induces acute-phase response associated AA amyloidosis in mice through conformational changes of plasma lipoprotein structure. Sci Rep 8(1):5620.  https://doi.org/10.1038/s41598-018-23755-yCrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Yang CY, Gu ZW, Blanco-Vaca F, Gaskell SJ, Yang M, Massey JB et al (1994) Structure of human apolipoprotein D: locations of the intermolecular and intramolecular disulfide links. Biochemistry 33(41):12451–12455CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Qu J, Ko CW, Tso P, Bhargava A (2019) Apolipoprotein A-IV: a multifunctional protein involved in protection against atherosclerosis and diabetes. Cells 8(4):Pii: E319.  https://doi.org/10.3390/cells8040319CrossRefGoogle Scholar
  51. 51.
    Manjunatha S, Distelmaier K, Dasari S, Carter RE, Kudva YC, Nair KS (2016) Functional and proteomic alterations of plasma high density lipoproteins in type 1 diabetes mellitus. Metabolism 65(9):1421–1431CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Nilsson SK, Lookene A, Beckstead JA, Gliemann J, Ryan RO, Olivecrona G (2007) Apolipoprotein A-V interaction with members of the low density lipoprotein receptor gene family. Biochemistry 46(12):3896–3904CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Xu C, Bai R, Zhang D, Li Z, Zhu H, Lai M, Zhu Y (2013) Effects of APOA5 -1131T>C (rs662799) on fasting plasma lipids and risk of metabolic syndrome: evidence from a case-control study in China and a meta-analysis. PLoS One 8(2):e56216.  https://doi.org/10.1371/journal.pone.0056216CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Smit M, van der Kooij-Meijs E, Frants RR, Havekes L, Klasen EC (1988) Apolipoprotein gene cluster on chromosome 19. Definite localization of the APOC2 gene and the polymorphic Hpa I site associated with type III hyperlipoproteinemia. Hum Genet 78(1):90–93CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Lee CJ, Choi S, Cheon DH, Kim KY, Cheon EJ, Ann SJ et al (2017) Effect of two lipid-lowering strategies on high-density lipoprotein function and some HDL-related proteins: a randomized clinical trial. Lipids Health Dis 16(1):49.  https://doi.org/10.1186/s12944-017-0433-6CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Barber MJ, Mangravite LM, Hyde CL, Chasman DI, Smith JD, McCarty CA et al (2010) Genome-wide association of lipid-lowering response to statins in combined study populations. PLoS One 5(3):e9763.  https://doi.org/10.1371/journal.pone.0009763CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    van den Broek I, Sobhani K, Van Eyk JE (2017) Advances in quantifying apolipoproteins using LC-MS/MS technology: implications for the clinic. Expert Rev Proteomics 14(10):869–880CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Chun EM, Park YJ, Kang HS, Cho HM, Jun DY, Kim YH (2001) Expression of the apolipoprotein C-II gene during myelomonocytic differentiation of human leukemic cells. J Leukoc Biol 69(4):645–650PubMedPubMedCentralGoogle Scholar
  59. 59.
    Kinnunen PK, Jackson RL, Smith LC, Gotto AM Jr, Sparrow JT (1977) Activation of lipoprotein lipase by native and synthetic fragments of human plasma apolipoprotein C-II. Proc Natl Acad Sci U S A 74(11):4848–4851CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Kumpusalo E, Karinpää A, Jauhiainen M, Laitinen M, Lappeteläinen R, Mäenpää PH (1990) Multivitamin supplementation of adult omnivores and lactovegetarians: circulating levels of vitamin a, D and E, lipids, apolipoproteins and selenium. Int J Vitam Nutr Res 60(1):58–66PubMedPubMedCentralGoogle Scholar
  61. 61.
    Breckenridge WC, Little JA, Steiner G, Chow A, Poapst M (1978) Hypertriglyceridemia associated with deficiency of apolipoprotein C-II. N Engl J Med 298:1265–1273CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Cox DW, Breckenridge WC, Little JA (1978) Inheritance of apolipoprotein C-II deficiency with hypertriglyceridemia and pancreatitis. N Engl J Med 299(26):1421–1424CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Wolska A, Dunbar RL, Freeman LA, Ueda M, Amar MJ, Sviridov DO et al (2017) Apolipoprotein C-II: new findings related to genetics, biochemistry, and role in triglyceride metabolism. Atherosclerosis 267:49–60CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Rezeli M, Vegvari A, Fehniger TE, Laurell T, Marko-Varga G (2011) Moving towards high density clinical signature studies with a human proteome catalogue developing multiplexing mass spectrometry assay panels. J Clin Bioinform 1(1):7.  https://doi.org/10.1186/2043-9113-1-7CrossRefGoogle Scholar
  65. 65.
    Abrams AJ, Farooq A, Wang G (2011) S-nitrosylation of ApoE in Alzheimer’s disease. Biochemistry 50(17):3405–3407CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Ducret A, Bruun CF, Bures EJ, Marhaug G, Husby G, Aebersold R (1996) Characterization of human serum amyloid a protein isoforms separated by two-dimensional electrophoresis by liquid chromatography/electrospray ionization tandem mass spectrometry. Electrophoresis 17(5):866–876CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Halim A, Nilsson J, Rüetschi U, Hesse C, Larson G (2012) Human urinary glycoproteomics; attachment site specific analysis of N- and O-linked glycosylations by CID and ECD. Mol Cell Proteomics 11(4):M111.013649.  https://doi.org/10.1074/mcp.M111.013649CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Kumar A, Gangadharan B, Cobbold J, Thursz M, Zitzmann N (2017) Absolute quantitation of disease protein biomarkers in a single LC-MS acquisition using apolipoprotein F as an example. Sci Rep 7(1):12072.  https://doi.org/10.1038/s41598-017-12229-2CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Morton RE, Greene DJ (2011) Conversion of lipid transfer inhibitor protein (apolipoprotein F) to its active form depends on LDL composition. J Lipid Res 52(12):2262–2271CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Kujiraoka T, Nakamoto T, Sugimura H, Iwasaki T, Ishihara M, Hoshi T et al (2013) Clinical significance of plasma apolipoprotein F in Japanese healthy and hypertriglyceridemic subjects. J Atheroscler Thromb 20(4):380–390CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Chen R, Jiang X, Sun D, Han G, Wang F, Ye M et al (2009) Glycoproteomics analysis of human liver tissue by combination of multiple enzyme digestion and hydrazide chemistry. J Proteome Res 8(2):651–661CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Huang LZ, Gao JL, Pu C, Zhang PH, Wang LZ, Feng G et al (2015) Apolipoprotein M: research progress, regulation and metabolic functions (review). Mol Med Rep 12(2):1617–1624CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Lassman ME, McLaughlin TM, Zhou H, Pan Y, Marcovina SM, Laterza O et al (2014) Simultaneous quantitation and size characterization of apolipoprotein(a) by ultra-performance liquid chromatography/mass spectrometry. Rapid Commun Mass Spectrom 28(10):1101–1106CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Vasquez N, Joshi PH (2019) Lp(a): addressing a target for cardiovascular disease prevention. Curr Cardiol Rep 21(9):102.  https://doi.org/10.1007/s11886-019-1182-0CrossRefPubMedGoogle Scholar
  75. 75.
    Lamant M, Smih F, Harmancey R, Philip-Couderc P, Pathak A, Roncalli J et al (2006) ApoO, a novel apolipoprotein, is an original glycoprotein up-regulated by diabetes in human heart. J Biol Chem 281(47):36289–36302CrossRefGoogle Scholar
  76. 76.
    Yu BL, Wu CL, Zhao SP (2012) Plasma apolipoprotein O level increased in the patients with acute coronary syndrome. J Lipid Res 53(9):1952–1957CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Turkieh A, Caubere C, Barutaut M, Desmoulin F, Harmancey R, Galinier M et al (2014) Apolipoprotein O is mitochondrial and promotes lipotoxicity in heart. J Clin Invest 124(5):2277–2286CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Liu T, Qian WJ, Gritsenko MA, Camp DG 2nd, Monroe ME, Moore RJ et al (2005) Human plasma N-glycoproteome analysis by immunoaffinity subtraction, hydrazide chemistry, and mass spectrometry. J Proteome Res 4(6):2070–2080CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Tagliabracci VS, Wiley SE, Guo X, Kinch LN, Durrant E, Wen J et al (2015) A single kinase generates the majority of the secreted phosphoproteome. Cell 161(7):1619–1632CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Freedman BI, Kopp JB, Langefeld CD, Genovese G, Friedman DJ, Nelson GW et al (2010) The apolipoprotein L1 (APOL1) gene and nondiabetic nephropathy in African Americans. J Am Soc Nephrol 21(9):1422–1426CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Hu CA, Klopfer EI, Ray PE (2012) Human apolipoprotein L1 (ApoL1) in cancer and chronic kidney disease. FEBS Lett 586(7):947–955CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Patel N, Nadkarni GN (2019) Apolipoprotein L1, cardiovascular disease and hypertension: more questions than answers. Cardiol Clin 37(3):327–334CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Kay RG, Gregory B, Grace PB, Pleasance S (2007) The application of ultra-performance liquid chromatography/tandem mass spectrometry to the detection and quantitation of apolipoproteins in human serum. Rapid Commun Mass Spectrom 21(21):2585–2593CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Kumar A, Gangadharan B, Zitzmann N (2016) Multiple reaction monitoring and multiple reaction monitoring cubed based assays for the quantitation of apolipoprotein F. J Chromatogr B Analyt Technol Biomed Life Sci 1033-1034:278–286CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Zhou H, Hoek M, Yi P, Rohm RJ, Mahsut A, Brown P et al (2013) Rapid detection and quantification of apolipoprotein L1 genetic variants and total levels in plasma by ultra-performance liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 27(23):2639–2647CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Anne Poljak
    • 1
    • 2
    • 3
    Email author
  • Mark W. Duncan
    • 4
  • Tharusha Jayasena
    • 2
  • Perminder S. Sachdev
    • 2
    • 5
  1. 1.Bioanalytical Mass Spectrometry FacilityUniversity of New South WalesSydneyAustralia
  2. 2.Centre for Healthy Brain Ageing, School of PsychiatryUniversity of New South WalesSydneyAustralia
  3. 3.School of Medical SciencesUniversity of New South WalesSydneyAustralia
  4. 4.Target Discovery Inc.Mountain ViewUSA
  5. 5.Neuropsychiatric InstitutePrince of Wales HospitalSydneyAustralia

Personalised recommendations