Advertisement

Proteomic Analysis of Brain Tissue from a Chronic Model of Stress Using a Combined 2D Gel Electrophoresis and Mass Spectrometry Approach

  • Paul C. Guest
Protocol
  • 15 Downloads
Part of the Methods in Molecular Biology book series (MIMB, volume 2138)

Abstract

Aging of the brain can result in excessive glucocorticoid secretion, potentially due to chronic stress and related situations. This can lead to dysfunction of brain areas involved in control of the hypothalamic-pituitary adrenal axis, growth, and metabolism, as well as areas associated with cognition and mood regulation. This chapter presents a protocol for two-dimensional differential in-gel electrophoresis (2D-DIGE) analysis of hypothalamus and hippocampus tissue obtained from mice following exposure to high levels of corticosterone for 14 days. The chapter also presents a method for identification of the affected proteins in these brain regions using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry.

Key words

Stress Aging Corticosterone Hypothalamus Hippocampus 2D-DIGE MALDI-TOF mass spectrometry 

References

  1. 1.
    Ouanes S, Popp J (2019) High cortisol and the risk of dementia and Alzheimer’s disease: a review of the literature. Front Aging Neurosci 11:43.  https://doi.org/10.3389/fnagi.2019.00043CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Yiallouris A, Tsioutis C, Agapidaki E, Zafeiri M, Agouridis AP, Ntourakis D et al (2019) Adrenal aging and its implications on stress responsiveness in humans. Front Endocrinol (Lausanne) 10:54.  https://doi.org/10.3389/fendo.2019.00054CrossRefGoogle Scholar
  3. 3.
    Björntorp P (2002) Alterations in the ageing corticotropic stress-response axis. Novartis Found Symp 242:46–58PubMedGoogle Scholar
  4. 4.
    Pedersen WA, Wan R, Mattson MP (2001) Impact of aging on stress-responsive neuroendocrine systems. Mech Ageing Dev 122(9):963–983CrossRefGoogle Scholar
  5. 5.
    Gupta D, Morley JE (2014) Hypothalamic-pituitary-adrenal (HPA) axis and aging. Compr Physiol 4(4):1495–1510CrossRefGoogle Scholar
  6. 6.
    Burford NG, Webster NA, Cruz-Topete D (2017) Hypothalamic-pituitary-adrenal axis modulation of glucocorticoids in the cardiovascular system. Int J Mol Sci 18(10). pii: E2150.  https://doi.org/10.3390/ijms18102150
  7. 7.
    Joseph JJ, Golden SH (2017) Cortisol dysregulation: the bidirectional link between stress, depression, and type 2 diabetes mellitus. Ann N Y Acad Sci 1391(1):20–34CrossRefGoogle Scholar
  8. 8.
    Wolf T, Tsenkova V, Ryff CD, Davidson RJ, Willette AA (2018) Neural, hormonal, and cognitive correlates of metabolic dysfunction and emotional reactivity. Psychosom Med 80(5):452–459CrossRefGoogle Scholar
  9. 9.
    Raber J (1998) Detrimental effects of chronic hypothalamic-pituitary-adrenal axis activation. From obesity to memory deficits. Mol Neurobiol 18(1):1–22CrossRefGoogle Scholar
  10. 10.
    Geer EB (ed) (2016) The hypothalamic pituitary adrenal axis in health and disease: Cushing’s syndrome and beyond, 1st edn. Springer, New York. 2017 edn. ISBN-10: 3319459481Google Scholar
  11. 11.
    Arana GW, Baldessarin RJ, Ornsteen M (1985) The dexamethasone suppression test for diagnosis and prognosis in psychiatry. Arch Gen Psychiatry 42(12):11931204CrossRefGoogle Scholar
  12. 12.
    Bourdeau I, Bard C, Noel B, Leclerc I, Cordeau MP, Belair M et al (2002) A loss of brain volume in endogenous Cushing’s syndrome and its reversibility after correction of hypercortisolism. J Clin Endocrinol Metab 87(5):1949–1954PubMedGoogle Scholar
  13. 13.
    Sánchez MM, Young LJ, Plotsky PM, Insel TR (2000) Distribution of corticosteroid receptors in the rhesus brain: relative absence of glucocorticoid receptors in the hippocampal formation. J Neurosci 20(12):4657–4668CrossRefGoogle Scholar
  14. 14.
    Lucassen PJ, Oomen CA, Naninck EF, Fitzsimons CP, van Dam AM, Czeh B et al (2015) Regulation of adult neurogenesis and plasticity by (early) stress, glucocorticoids, and inflammation. Cold Spring Harb Perspect Biol 7:a021303.  https://doi.org/10.1101/cshperspect.a021303CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Fitzsimons CP, Herbert J, Schouten M, Meijer OC, Lucassen PJ, Lightman S (2016) Circadian and ultradian glucocorticoid rhythmicity: implications for the effects of glucocorticoids on neural stem cells and adult hippocampal neurogenesis. Front Neuroendocrinol 41:44–58CrossRefGoogle Scholar
  16. 16.
    Gądek-Michalska A, Spyrka J, Rachwalska P, Tadeusz J, Bugajski J (2013) Influence of chronic stress on brain corticosteroid receptors and HPA axis activity. Pharmacol Rep 65(5):1163–1175CrossRefGoogle Scholar
  17. 17.
    Sheline YI, Sanghavi M, Mintun MA, Gado MHJ (1999) Depression duration but not age predicts hippocampal volume loss in medically healthy women with recurrent major depression. Neuroscience 19(12):5034–5043CrossRefGoogle Scholar
  18. 18.
    Meleady P (2018) Two-dimensional gel electrophoresis and 2D-DIGE. Methods Mol Biol 1664:3–14CrossRefGoogle Scholar
  19. 19.
    Knowles MR, Cervino S, Skynner HA, Hunt SP, de Felipe C, Salim K et al (2003) Multiplex proteomic analysis by two-dimensional differential in-gel electrophoresis. Proteomics 3(7):1162–1171CrossRefGoogle Scholar
  20. 20.
    Paxinos G, Franklin KBJ (2019) Paxinos and Franklin’s the mouse brain in stereotaxic coordinates, 5th edn. Academic Press, Cambridge, MA. ISBN-10: 0128161574Google Scholar
  21. 21.
    Huynh ML, Russell P, Walsh B (2009) Tryptic digestion of in-gel proteins for mass spectrometry analysis. Methods Mol Biol 519:507–513CrossRefGoogle Scholar
  22. 22.
    Berth M, Moser FM, Kolbe M, Bernhardt J (2007) The state of the art in the analysis of two-dimensional gel electrophoresis images. Appl Microbiol Biotechnol 76(6):1223–1243CrossRefGoogle Scholar
  23. 23.
    Manfredi M, Robotti E, Marengo E (2016) Algorithms for warping of 2-D PAGE maps. Methods Mol Biol 1384:119–154CrossRefGoogle Scholar
  24. 24.
    de Oliveira RM, Sarkander J, Kazantsev AG, Outeiro TF (2012) SIRT2 as a therapeutic target for age-related disorders. Front Pharmacol 3:82.  https://doi.org/10.3389/fphar.2012.00082CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Alageel A, Tomasi J, Tersigni C, Brietzke E, Zuckerman H, Subramaniapillai M (2018) Evidence supporting a mechanistic role of sirtuins in mood and metabolic disorders. Prog Neuropsychopharmacol Biol Psychiatry 86:95–101CrossRefGoogle Scholar
  26. 26.
    Johnston-Wilson NL, Sims CD, Hofmann JP, Anderson L, Shore AD, Torrey EF et al (2000) Disease-specific alterations in frontal cortex brain proteins in schizophrenia, bipolar disorder, and major depressive disorder. The Stanley Neuropathology Consortium. Mol Psychiatry 5(2):142–149CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Paul C. Guest
    • 1
  1. 1.Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of BiologyUniversity of Campinas (UNICAMP)CampinasBrazil

Personalised recommendations