Randomized Study Design to Test Effects of Vitamin D and Omega-3 Fatty Acid Supplementation as Adjuvant Therapy in Colorectal Cancer Patients

  • Fatemeh Haidari
  • Behnaz Abiri
  • Masood Iravani
  • Kambiz Ahmadi-Angali
  • Mohammadreza VafaEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 2138)


This study examines the effects of vitamin D and omega-3 fatty acid co-supplementation on inflammation and nutritional status in colorectal cancer patients. Patients were randomly assigned into four groups: (1) controls, receiving placebos; (2) omega-3 fatty acid arm, receiving two 330 mg omega-3 fatty acid capsules daily and placebo (for vitamin D3) weekly; (3) vitamin D arm, receiving a 50,000 IU vitamin D3 soft gel weekly and two placebos (for omega-3 fatty acids) daily; and (4) co-supplementation arm, receiving a 50,000 IU vitamin D3 soft gel weekly and two 330 mg omega-3 fatty acids capsules daily for 8 weeks. As outcomes, we measure height; weight; fat-free mass (FFM); serum levels of 25(OH)D, TNF-α, and IL-6; C-CRP; and albumin, before and after the intervention. The presented results show that vitamin D3 plus omega-3 fatty acid co-supplementation in colorectal cancer patients has beneficial impacts on inflammation and nutritional status.

Key words

Vitamin D Omega-3 fatty acids Colorectal cancer Inflammatory biomarkers Nutritional status 


  1. 1.
    Sharma G, Rani I, Bhatnagar A, Agnihotri N (2016) Apoptosis-mediated chemoprevention by different ratios of fish oil in experimental colon carcinogenesis. Cancer Investig 34(5):220–230CrossRefGoogle Scholar
  2. 2.
    Refaat B, El-Shemi AG, Kensara OA, Mohamed AM, Idris S, Ahmad J et al (2015) Vitamin D3 enhances the tumouricidal effects of 5-Fluorouracil through multipathway mechanisms in azoxymethane rat model of colon cancer. J Exp Clin Cancer Res 34:71. Scholar
  3. 3.
    Pan M-H, Lai C-S, Wu J-C, Ho C-T (2011) Molecular mechanisms for chemoprevention of colorectal cancer by natural dietary compounds. Mol Nutr Food Res 55:32–45CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Kato T, Kolenic N, Pardini RS (2007) Docosahexaenoic acid (DHA), a primary tumor suppressive omega-3 fatty acid, inhibits growth of colorectal cancer independent of p53 mutational status. Nutr Cancer 58(2):178–187CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Benson AL (2007) Epidemiology, disease progression, and economic burden of colorectal cancer. J Manag Care Pharm 13(6, Suppl S-c):S5–S18PubMedPubMedCentralGoogle Scholar
  6. 6.
    Hardman WE (2002) Omega-3 fatty acids to augment cancer therapy. J Nutr 132:3508S–3512SCrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Silva JD, Trindade EB, Fabre ME, Menegotto VM, Gevaerd S, Buss ZD et al (2012) Fish oil supplement alters markers of inflammatory and nutritional status in colorectal cancer patients. Nutr Cancer 64(2):267–273CrossRefGoogle Scholar
  8. 8.
    Berquin IM, Edward IJ, Chen YQ (2008) Multi-targeted therapy of cancer by omega-3 fatty acids. Cancer Lett 269(2):363–377CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Saito T, Okamoto R, Haritunians T, O’Kelly J, Uskokovic M, Maehr H et al (2008) Novel Gemini vitamin D(3) analogs have potent antitumor activity. J Steroid Biochem Mol Biol 112:151–156CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Wietrzyk J, Milczarek M, Kutner A (2007) The effect of combined treatment on head and neck human cancer cell lines with novel analogs of calcitriol and cytostatics. Oncol Res 16:517–525CrossRefGoogle Scholar
  11. 11.
    Wietrzyk J, Nevozhay D, Milczarek M, Filip B, Kutner A (2008) Toxicity and antitumor activity of the vitamin D analogs PRI-1906 and PRI-1907 in combined treatment with cyclophosphamide in a mouse mammary cancer model. Cancer Chemother Pharmacol 62:787–797CrossRefGoogle Scholar
  12. 12.
    Davis CD (2008) Vitamin D and cancer: current dilemmas and future research needs. Am J Clin Nutr 88:565S–569SCrossRefGoogle Scholar
  13. 13.
    Bao Y, Ng K, Wolpin BM, Michaud DS, Giovannucci E, Fuchs CS (2010) Predicted vitamin D status and pancreatic cancer risk in two prospective cohort studies. Br J Cancer 102:1422–1427CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Mohammadzadeh M, Faramarzi E, Mahdavi R, Nasirimotlagh B, Asghari Jafarabadi M (2013) Effect of conjugated linoleic acid supplementation on inflammatory factors and matrix metalloproteinase enzymes in rectal cancer patients undergoing chemoradiotherapy. Integr Cancer Ther 12(6):496–502CrossRefGoogle Scholar
  15. 15.
    Germano G, Allavena P, Mantovani A (2008) Cytokines as a key component of cancer-related inflammation. Cytokine 43:374–379CrossRefGoogle Scholar
  16. 16.
    Aggarwal BB, Vijayalekshimi RV, Sung B (2009) Targeting inflammatory pathways for prevention and therapy of cancer: short-term friend, long-term foe. Clin Cancer Res 15:425–430CrossRefGoogle Scholar
  17. 17.
    Kutner MH, Nachtsheim CJ, Neter J, Li W (2013) Applied linear statistical models, 5 edn. McGraw-Hill, India; 5 edn (2013) McGraw-Hill/Irwin; 5 edn (10 Aug 2004). ISBN-10: 1259064743Google Scholar
  18. 18.
    Burns CP, Halabi S, Clamon G, Kaplan E, Hohl RJ, Atkins JN et al (2004) Phase II study of high-dose fish oil capsules for patients with cancer-related cachexia. Cancer 101:370–378CrossRefGoogle Scholar
  19. 19.
    Moses AW, Slater C, Preston T, Barber MD, Fearon KC (2004) Reduced total energy expenditure and physical activity in cachexia patients with pancreatic cancer can be modulated by an energy and protein dense oral supplement enriched with n-3 fatty acids. Br J Cancer 90:996–1002CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Read JA, Beale PJ, Volker DH, Smith N, Childs A, Clarke SJ (2007) Nutritional intervention using an eicosapentaenoic acid (EPA)-containing supplement in patients with advanced colorectal cancer. Effects on nutritional and inflammatory status: a phase II trial. Support Care Cancer 15:301–307CrossRefPubMedGoogle Scholar
  21. 21.
    Ferruci L, Cherubini A, Bandinelli S, Bartali B, Corsi A, Lauretani F et al (2006) Relationship of plasma polyunsaturated fatty acids to circulating inflammatory markers. J Clin Endocrinol Metab 91(2):439–446CrossRefGoogle Scholar
  22. 22.
    Narayanan BA, Narayanan NK, Simi B, Reddy BS (2003) Modulation of inducible nitric oxide synthase and related proinflammatory genes by the omega-3 fatty acid docosahexaenoic acid in human colon cancer cells. Cancer Res 63:972–979PubMedGoogle Scholar
  23. 23.
    Sheng H, Shao J, Washington MK, Dubois RN (2001) Prostaglandin E2 increases growth and motility of colorectal carcinoma cells. J Biol Chem 276:18075–18081CrossRefPubMedGoogle Scholar
  24. 24.
    Ahangar P, Sam MR, Nejati V, Habibian R (2016) Treatment of undifferentiated colorectal cancer cells with fish-oil derived docosahexaenoic acid triggers caspase-3 activation and apoptosis. J Cancer Res Ther 12:798–804CrossRefPubMedGoogle Scholar
  25. 25.
    Dommels YE, Haring MM, Keestra NG, Alink GM, van Bladeren PJ, van Ommen B (2003) The role of cyclooxygenase in n-6 and n-3 polyunsaturated fatty acid mediated effects on cell proliferation, PGE[2] synthesis and cytotoxicity in human colorectal carcinoma cell lines. Carcinogenesis 24(3):385–392CrossRefPubMedGoogle Scholar
  26. 26.
    Falconer JS, Ross JA, Fearon KCH, Hawkins AH, O’Riordain MG, Carter DC (1994) Effect of eicosapentaenoic acid and other fatty acids on the growth in vitro of human pancreatic cancer cell lines. Br J Cancer 69:826–832CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Lai PBS, Ross JA, Fearon KCH, Anderson JD, Carter DC (1996) Cell cycle arrest and induction of apoptosis in pancreatic cancer cells exposed to eicosapentaenoic acid in vitro. Br J Cancer 74:1375–1383CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Aslan A, Triadafilopoulos G (1992) Fish oil fatty acid supplementation in active ulcerative colitis: a double-blind, placebo-controlled, crossover study. Am J Gastroenterol 87:432–437PubMedPubMedCentralGoogle Scholar
  29. 29.
    Salomon P, Kornbluth AA, Janowitz HD (1990) Treatment of ulcerative colitis with fish oil n–3-omega-fatty acid: an open trial. J Clin Gastroenterol 12:157–161CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Belluzzi A, Boschi S, Brignola C, Munarini A, Cariani G, Miglio F (2000) Polyunsaturated fatty acids and inflammatory bowel disease. Am J Clin Nutr 71:339S–342SCrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Akedo I, Ishikawa H, Nakamura T, Kimura K, Takeyama I, Suzuki T et al (1998) Three cases with familial adenomatous polyposis diagnosed as having malignant lesions in the course of a long-term trial using docosahexaenoic acid (DHA)-concentrated fish oil capsules. Jpn J Clin Oncol 28(12):762–765CrossRefGoogle Scholar
  32. 32.
    Kobayashi M, Tsubono Y, Otani T, Hanaoka T, Sobue T, Tsugane S (2004) Fish, long-chain n-3 polyunsaturated fatty acids, and risk of colorectal cancer in middle-aged Japanese: the JPHC study. Nutr Cancer 49:32–40CrossRefGoogle Scholar
  33. 33.
    Stern MC, Butler LM, Corral R, Joshi AD, Yuan JM, Koh WP et al (2009) Polyunsaturated fatty acids, DNA repair single nucleotide polymorphisms and colorectal cancer in the Singapore Chinese health study. J Nutrigenet Nutrigenomics 2:273–279CrossRefGoogle Scholar
  34. 34.
    Woodworth HL, McCaskey SJ, Duriancik DM, Clinthorne JF, Langohr IM, Gardner EM et al (2010) Dietary fish oil alters T lymphocyte cell populations and exacerbates disease in a mouse model of inflammatory colitis. Cancer Res 70:7960–7969CrossRefGoogle Scholar
  35. 35.
    Song M, Chan AT, Fuchs CS, Ogino S, Hu FB, Mozaffarian D et al (2014) Dietary intake of fish, ω-3 and ω-6 fatty acids and risk of colorectal cancer: a prospective study in U.S. men and women. Int J Cancer 135(10):2413–2423CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Müller K, Odum N, Bendtzen K (1993) 1,25-Dihydroxyvitamin D3 selectively reduces interleukin-2 levels and proliferation of human T cell lines in vitro. Immunol Lett 35:177–182CrossRefGoogle Scholar
  37. 37.
    Gurlek A, Pittelkow MR, Kumar R (2002) Modulation of growth factor/cytokine synthesis and signaling by 1alpha,25-dihydroxyvitamin D(3): implications in cell growth and differentiation. Endocr Rev 23:763–786CrossRefGoogle Scholar
  38. 38.
    Mumm JB, Oft M (2008) Cytokine-based transformation of immune surveillance into tumor promoting inflammation. Oncogene 27(45):5913–5919CrossRefGoogle Scholar
  39. 39.
    Hopkins MH, Owen J, Ahearn T, Fedirko V, Flanders WD, Jones DP et al (2011) Effects of supplemental vitamin D and calcium on biomarkers of inflammation in colorectal adenoma patients: a randomized, controlled clinical trial. Cancer Prev Res (Phila) 4(10):1645–1654CrossRefGoogle Scholar
  40. 40.
    Cantorna MT, Munsick C, Bemiss C, Mahon BD (2000) 1,25-Dihydroxycholecalciferol prevents and ameliorates symptoms of experimental murine inflammatory bowel disease. J Nutr 130(11):2648–2652CrossRefPubMedGoogle Scholar
  41. 41.
    Ryz NR, Patterson S, Zhang Y, Ma C, Huang T, Bhinder G et al (2012) Active vitamin D(1,25-dihydroxyvitamin D3) increases host susceptibility to Citrobacter rodentium by suppressing mucosal Th17 responses. Am J Physiol Gastrointest Liver Physiol 303(12):G1299–G1311CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Fuchs MA, Yuan C, Sato K, Niedzwiecki D, Ye X, Saltz LB et al (2017) Predicted vitamin D status and colon cancer recurrence and mortality in CALGB 89803 (Alliance). Ann Oncol 28(6):1359–1367CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Lappe JM, Travers-Gustafson D, Davies KM, Recker RR, Heaney RP (2007) Vitamin D and calcium supplementation reduces cancer risk: results of a randomized trial. Am J Clin Nutr 85:1586–1591CrossRefPubMedGoogle Scholar
  44. 44.
    McDonnell SL, Baggerly CA, French CB, Baggerly LL, Garland CF, Gorham ED et al (2018) Breast cancer risk markedly lower with serum 25-hydroxyvitamin D concentrations ≥60 vs <20 ng/ml (150 vs 50 nmol/L): pooled analysis of two randomized trials and a prospective cohort. PLoS One 13(6):e0199265. Scholar
  45. 45.
    McDonnell SL, Baggerly C, French CB, Baggerly LL, Garland CF, Gorham ED et al (2016) Serum 25-hydroxyvitamin D concentrations ≥40 ng/ml are associated with >65% lower CancerRisk: pooled analysis of randomized trial and prospective cohort study. PLoS One 11(4):e0152441. Scholar
  46. 46.
    Manson JE, Cook NR, Lee IM, Christen W, Bassuk SS, VITALResearch Group (2019) Vitamin D supplements and prevention of cancer and cardiovascular disease. N Engl J Med 380(1):33–44CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Fatemeh Haidari
    • 1
  • Behnaz Abiri
    • 2
  • Masood Iravani
    • 3
  • Kambiz Ahmadi-Angali
    • 4
  • Mohammadreza Vafa
    • 5
    Email author
  1. 1.Nutrition and Metabolic Diseases Research CenterAhvaz Jundishapur University of Medical SciencesAhvazIran
  2. 2.Department of Nutrition, Faculty of ParamedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
  3. 3.Tehran University of Medical SciencesTehranIran
  4. 4.Ahvaz Jundishapur University of Medical SciencesAhvazIran
  5. 5.Department of Nutrition, School of Public HealthIran University of Medical SciencesTehranIran

Personalised recommendations