Advertisement

The Impact of New Biomarkers and Drug Targets on Age-Related Disorders

  • Paul C. Guest
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2138)

Abstract

The increase in the human lifespan has not been paralleled by an increase in healthy life. With the increase in the proportion of the aged population, there has been a natural increase in the prevalence of age-related disorders, such as Alzheimer’s disease, type 2 diabetes mellitus, frailty, and various other disorders. A continuous rise in these conditions could lead to a widespread medical and social burden. There are now considerable efforts underway to address these deficits in preclinical and clinical studies, which include the use of better study cohorts, longitudinal designs, improved translation of data from preclinical models, multi-omics profiling, identification of new biomarker candidates and refinement of computational tools and databases containing relevant information. Such efforts will support future interdisciplinary studies and help to identify potential new targets that are amenable to therapeutic approaches such as pharmacological interventions to increase the human healthspan in parallel with the lifespan.

Key words

Longevity Age-related disorders Dementia Diabetes Heart disease Sarcopenia Cancer Biomarkers Drug targets 

References

  1. 1.
    Olshansky SJ, Carnes BA (2019) Inconvenient truths about human longevity. J Gerontol A Biol Sci Med Sci 74(Suppl 1):S7–S12.  https://doi.org/10.1093/gerona/glz098CrossRefPubMedGoogle Scholar
  2. 2.
  3. 3.
    Cutler RG, Mattson MP (2006) The adversities of aging. Ageing Res Rev 5(3):221–238PubMedCrossRefGoogle Scholar
  4. 4.
    Kirkland JL, Peterson C (2009) Healthspan, translation, and new outcomes for animal studies of aging. J Gerontol A Biol Sci Med Sci 64(2):209–212PubMedCrossRefGoogle Scholar
  5. 5.
    Lai WF, Chan ZC (2011) Beyond sole longevity: a social perspective on healthspan extension. Rejuvenation Res 14(1):83–88PubMedCrossRefGoogle Scholar
  6. 6.
    Seals DR, Justice JN, LaRocca TJ (2016) Physiological geroscience: targeting function to increase healthspan and achieve optimal longevity. J Physiol 594(8):2001–2024PubMedCrossRefGoogle Scholar
  7. 7.
    Olshansky SJ, Goldman DP, Zheng Y, Rowe JW (2009) Aging in America in the twenty-first century: demographic forecasts from the MacArthur Foundation research network on an aging society. Milbank Q 87(4):842–862PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Harper S (2014) Economic and social implications of aging societies. Science 346(6209):587–591CrossRefGoogle Scholar
  9. 9.
    Andersen SL, Sebastiani P, Dworkis DA, Feldman L, Perls TT (2012) Health span approximates life span among many supercentenarians: compression of morbidity at the approximate limit of life span. J Gerontol A Biol Sci Med Sci 67(4):395–405PubMedCrossRefGoogle Scholar
  10. 10.
    Crimmins EM, Beltrán-Sánchez H (2011) Mortality and morbidity trends: is there compression of morbidity? J Gerontol B Psychol Sci Soc Sci 66(1):75–86PubMedCrossRefGoogle Scholar
  11. 11.
  12. 12.
    Beltran-Sanchez H, Preston SH, Canudas-Romo V (2008) An integrated approach to cause-of-death analysis: cause-deleted life tables and decompositions of life expectancy. Demogr Res 19:1323.  https://doi.org/10.4054/DemRes.2008.19.35CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Coelho-Júnior HJ, Milano-Teixeira L, Rodrigues B, Bacurau R, Marzetti E, Uchida M (2018) Relative protein intake and physical function in older adults: a systematic review and meta-analysis of observational studies. Nutrients 10(9):pii: E1330.  https://doi.org/10.3390/nu10091330CrossRefGoogle Scholar
  14. 14.
    Govindaraju T, Sahle BW, McCaffrey TA, McNeil JJ, Owen AJ (2018) Dietary patterns and quality of life in older adults: a systematic review. Nutrients 10(8):pii: E971.  https://doi.org/10.3390/nu10080971CrossRefGoogle Scholar
  15. 15.
    Klímová B, Vališ M (2018) Nutritional interventions as beneficial strategies to delay cognitive decline in healthy older individuals. Nutrients 10(7):pii: E905.  https://doi.org/10.3390/nu10070905CrossRefGoogle Scholar
  16. 16.
    Blanchet S, Chikhi S, Maltais D (2018) The benefits of physical activities on cognitive and mental health in healthy and pathological aging. Geriatr Psychol Neuropsychiatr Vieil 16(2):197–205PubMedGoogle Scholar
  17. 17.
    Fisher JP, Steele J, Gentil P, Giessing J, Westcott WL (2017) A minimal dose approach to resistance training for the older adult; the prophylactic for aging. Exp Gerontol 99:80–86PubMedCrossRefGoogle Scholar
  18. 18.
    Schnohr P, O’Keefe JH, Lange P, Jensen GB, Marott JL (2017) Impact of persistence and non-persistence in leisure time physical activity on coronary heart disease and all-cause mortality: the Copenhagen City heart study. Eur J Prev Cardiol 24(15):1615–1623PubMedCrossRefGoogle Scholar
  19. 19.
    Shadyab AH, LaMonte MJ, Kooperberg C, Reiner AP, Carty CL, Manini TM (2017) Association of accelerometer-measured physical activity with leukocyte telomere length among older women. J Gerontol A Biol Sci Med Sci 72(11):1532–1537PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    https://www.who.int/tobacco/global_report/2011/implementation_effective_measures.pdfGoogle Scholar
  21. 21.
    Murray CJ, Lopez AD (2013) Measuring the global burden of disease. N Engl J Med 369(5):448–457PubMedCrossRefGoogle Scholar
  22. 22.
    Hagberg B, Samuelsson G (2008) Survival after 100 years of age: a multivariate model of exceptional survival in Swedish centenarians. J Gerontol A Biol Sci Med Sci 63(11):1219–1226PubMedCrossRefGoogle Scholar
  23. 23.
    Rajpathak SN, Liu Y, Ben-David O, Reddy S, Atzmon G, Crandall J et al (2011) Lifestyle factors of people with exceptional longevity. J Am Geriatr Soc 59(8):1509–1512PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Levine M, Crimmins E (2014) Not all smokers die young: a model for hidden heterogeneity within the human population. PLoS One 9(2):e87403.  https://doi.org/10.1371/journal.pone.0087403CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Reid MC, Boutros NN, O’Connor PG, Cadariu A, Concato J (2002) The health-related effects of alcohol use in older persons: a systematic review. Subst Abus 23(3):149–164PubMedGoogle Scholar
  26. 26.
    Kloner RA, Rezkalla SH (2007) To drink or not to drink? That is the question. Circulation 116(11):1306–1317PubMedCrossRefGoogle Scholar
  27. 27.
    Giles LC, Glonek GF, Luszcz MA, Andrews GR (2005) Effect of social networks on 10 year survival in very old Australians: the Australian longitudinal study of aging. J Epidemiol Community Health 59(7):574–579PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Manzoli L, Villari P, Pirone GM, Boccia A (2007) Marital status and mortality in the elderly: a systematic review and meta-analysis. Soc Sci Med 64(1):77–94PubMedCrossRefGoogle Scholar
  29. 29.
    Holt-Lunstad J, Smith TB, Layton JB (2010) Social relationships and mortality risk: a meta-analytic review. PLoS Med 7:e1000316.  https://doi.org/10.1371/journal.pmed.1000316CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Cohen S (2004) Social relationships and health. Am Psychol 59(8):676–684PubMedCrossRefGoogle Scholar
  31. 31.
    Njajou OT, Hsueh WC, Blackburn EH, Newman AB, Wu SH, Li R et al (2009) Association between telomere length, specific causes of death, and years of healthy life in health, aging, and body composition, a population-based cohort study. J Gerontol A Biol Sci Med Sci 64(8):860–864PubMedCrossRefGoogle Scholar
  32. 32.
    Kim S, Bi X, Czarny-Ratajczak M, Dai J, Welsh DA, Myers L et al (2012) Telomere maintenance genes SIRT1 and XRCC6 impact age-related decline in telomere length but only SIRT1 is associated with human longevity. Biogerontology 13(2):119–131PubMedCrossRefGoogle Scholar
  33. 33.
    Bendix L, Gade MM, Staun PW, Kimura M, Jeune B, Hjelmborg JV et al (2011) Leukocyte telomere length and physical ability among Danish twins age 70+. Mech Ageing Dev 132(11–12):568–572PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Risques RA, Arbeev KG, Yashin AI, Ukraintseva SV, Martin GM, Rabinovitch PS et al (2010) Leukocyte telomere length is associated with disability in older U.S. population. J Am Geriatr Soc 58(7):1289–1298PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Soerensen M, Thinggaard M, Nygaard M, Dato S, Tan Q, Hjelmborg J et al (2012) Genetic variation in TERT and TERC and human leukocyte telomere length and longevity: a cross-sectional and longitudinal analysis. Aging Cell 11(2):223–227PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Atzmon G, Cho M, Cawthon RM, Budagov T, Katz M, Yang X et al (2010) Evolution in health and medicine Sackler colloquium: genetic variation in human telomerase is associated with telomere length in Ashkenazi centenarians. Proc Natl Acad Sci U S A 107(Suppl 1):1710–1717PubMedCrossRefGoogle Scholar
  37. 37.
    Deelen J, Uh HW, Monajemi R, van Heemst D, Thijssen PE, Bohringer S et al (2013) Gene set analysis of GWAS data for human longevity highlights the relevance of the insulin/IGF-1 signaling and telomere maintenance pathways. Age (Dordr) 35(1):235–249CrossRefGoogle Scholar
  38. 38.
  39. 39.
  40. 40.
    Mecocci P, Boccardi V, Cecchetti R, Bastiani P, Scamosci M, Ruggiero C et al (2018) A Long journey into aging, brain aging, and Alzheimer’s disease following the oxidative stress tracks. J Alzheimers Dis 62(3):1319–1335PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Cummings JL, Cole G (2002) Alzheimer disease. JAMA 287(18):2335–2338PubMedCrossRefGoogle Scholar
  42. 42.
    Billingsley ML, Kincaid RL (1997) Regulated phosphorylation and dephosphorylation of tau protein: effects on microtubule interaction, intracellular trafficking and neurodegeneration. Biochem J 323(Pt 3):577–559PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Berg L, McKeel DW Jr, Miller JP, Baty J, Morris JC (1993) Neuropathological indexes of Alzheimer’s disease in demented and non demented persons aged 80 years and older. Arch Neurol 50(4):349–358PubMedCrossRefGoogle Scholar
  44. 44.
    Giannakopoulos P, Herrmann FR, Bussière T, Bouras C, Kövari E, Perl DP et al (2003) Tangle and neuron numbers, but not amyloid load, predict cognitive status in Alzheimer’s disease. Neurology 60(9):1495–1500PubMedCrossRefGoogle Scholar
  45. 45.
    Poprac P, Jomova K, Simunkova M, Kollar V, Rhodes CJ, Valko M (2017) Targeting free radicals in oxidative stress-related human diseases. Trends Pharmacol Sci 38(7):592–607PubMedCrossRefGoogle Scholar
  46. 46.
    Oliver DMA, Reddy PH (2019) Small molecules as therapeutic drugs for Alzheimer’s disease. Mol Cell Neurosci 96:47–62PubMedCrossRefGoogle Scholar
  47. 47.
    Rentz DM, Parra Rodriguez MA, Amariglio R, Stern Y, Sperling R, Ferris S (2013) Promising developments in neuropsychological approaches for the detection of preclinical Alzheimer’s disease: a selective review. Alzheimers Res Ther 5:58.  https://doi.org/10.1186/alzrt222. eCollection 2013CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Rentz DM, Amariglio RE, Becker JA, Frey M, Olson LE, Frishe K et al (2011) Face-name associative memory performance is related to amyloid burden in normal elderly. Neuropsychologia 49(9):2776–2783.  https://doi.org/10.1016/j.neuropsychologia.2011.06.006CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Counts SE, Ikonomovic MD, Mercado N, Vega IE, Mufson EJ (2017) Biomarkers for the early detection and progression of Alzheimer’s disease. Neurotherapeutics 14(1):35–53PubMedCrossRefGoogle Scholar
  50. 50.
    Villemagne VL, Rowe CC, Barnham KJ, Cherny R, Woodward M, Bozinosvski S et al (2017) A randomized, exploratory molecular imaging study targeting amyloid β with a novel 8-OH quinoline in Alzheimer’s disease: the PBT2-204 IMAGINE study. Alzheimers Dement (N Y) 3(4):622–635Google Scholar
  51. 51.
    Varma VR, Oommen AM, Varma S, Casanova R, An Y, Andrews RM et al (2018) Brain and blood metabolite signatures of pathology and progression in Alzheimer disease: a targeted metabolomics study. PLoS Med 15(1):e1002482.  https://doi.org/10.1371/journal.pmed.1002482CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Nabers A, Perna L, Lange J, Mons U, Schartner J, Güldenhaupt J et al (2018) Amyloid blood biomarker detects Alzheimer’s disease. EMBO Mol Med 10(5):pii: e8763.  https://doi.org/10.15252/emmm.201708763CrossRefGoogle Scholar
  53. 53.
    Doraiswamy PM (2002) Non-cholinergic strategies for treating and preventing Alzheimer’s disease. CNS Drugs 16(12):811–824PubMedCrossRefGoogle Scholar
  54. 54.
    Doggrell S (2003) Is memantine a breakthrough in the treatment of moderate-to-severe Alzheimer’s disease? Expert Opin Pharmacother 4(10):1857–1860PubMedCrossRefGoogle Scholar
  55. 55.
    Modrego PJ (2010) Depression in Alzheimer’s disease. Pathophysiology, diagnosis, and treatment. J Alzheimers Dis 21(4):1077–1087PubMedCrossRefGoogle Scholar
  56. 56.
    El Haj M, Gallouj K, Antoine P (2017) Google calendar enhances prospective memory in Alzheimer’s disease: a case report. J Alzheimers Dis 57(1):285–291PubMedCrossRefGoogle Scholar
  57. 57.
    Brown EL, Ruggiano N, Li J, Clarke PJ, Kay ES, Hristidis V (2017) Smartphone-based health technologies for dementia care: opportunities, challenges, and current practices. J Appl Gerontol Aug 1:733464817723088.  https://doi.org/10.1177/0733464817723088CrossRefGoogle Scholar
  58. 58.
    Brown BM, Peiffer JJ, Sohrabi HR, Mondal A, Gupta VB, Rainey-Smith SR et al (2012) Intense physical activity is associated with cognitive performance in the elderly. Transl Psychiatry 2:e191.  https://doi.org/10.1038/tp.2012.118CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Huntley JD, Gould RL, Liu K, Smith M, Howard RJ (2015) Do cognitive interventions improve general cognition in dementia? A meta-analysis and meta-regression. BMJ Open 5(4):e005247.  https://doi.org/10.1136/bmjopen-2014-005247CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Jhee S, Shiovitz T, Crawford AW, Cutler NR (2001) Beta-amyloid therapies in Alzheimer’s disease. Expert Opin Investig Drugs 10(4):593–605PubMedCrossRefGoogle Scholar
  61. 61.
    Pollack SJ, Lewis H (2005) Secretase inhibitors for Alzheimer’s disease: challenges of a promiscuous protease. Curr Opin Investig Drugs 6(1):35–47PubMedGoogle Scholar
  62. 62.
    Chen GF, Xu TH, Yan Y, Zhou YR, Jiang Y, Melcher K (2017) Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacol Sin 38(9):1205–1235PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Correia SC, Santos RX, Perry G, Zhu X, Moreira PI, Smith MA (2011) Insulin-resistant brain state: the culprit in sporadic Alzheimer’s disease? Ageing Res Rev 10(2):264–273PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Sato T, Hanyu H, Hirao K, Kanetaka H, Sakurai H, Iwamoto T (2011) Efficacy of PPAR-γ agonist pioglitazone in mild Alzheimer disease. Neurobiol Aging 32(9):1626–1633PubMedCrossRefGoogle Scholar
  65. 65.
    Cheng H, Shang Y, Jiang L, Shi TL, Wang L (2016) The peroxisome proliferators activated receptor-gamma agonists as therapeutics for the treatment of Alzheimer’s disease and mild-to-moderate Alzheimer’s disease: a meta-analysis. Int J Neurosci 126(4):299–307PubMedCrossRefGoogle Scholar
  66. 66.
    Wisniewski T, Drummond E (2016) Developing therapeutic vaccines against Alzheimer’s disease. Expert Rev Vaccines 15(3):401–415PubMedCrossRefGoogle Scholar
  67. 67.
    Hung SY, Fu WM (2017) Drug candidates in clinical trials for Alzheimer’s disease. J Biomed Sci 24(1):47.  https://doi.org/10.1186/s12929-017-0355-7CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Grüninger F (2015) Invited review: drug development for tauopathies. Neuropathol Appl Neurobiol 41(1):81–96PubMedCrossRefGoogle Scholar
  69. 69.
    Godyń J, Jończyk J, Panek D, Malawska B (2016) Therapeutic strategies for Alzheimer’s disease in clinical trials. Pharmacol Rep 68(1):127–138PubMedCrossRefGoogle Scholar
  70. 70.
    Novak P, Schmidt R, Kontsekova E, Zilka N, Kovacech B, Skrabana R et al (2017) Safety and immunogenicity of the tau vaccine AADvac1 in patients with Alzheimer’s disease: a randomised, double-blind, placebo-controlled, phase 1 trial. Lancet Neurol 16(2):123–134PubMedCrossRefGoogle Scholar
  71. 71.
    Schultz BG, Patten DK, Berlau DJ (2018) The role of statins in both cognitive impairment and protection against dementia: a tale of two mechanisms. Transl Neurodegener 7:5.  https://doi.org/10.1186/s40035-018-0110-3CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Li HH, Lin CL, Huang CN (2018) Neuroprotective effects of statins against amyloid β-induced neurotoxicity. Neural Regen Res 13(2):198–206PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Chu CS, Tseng PT, Stubbs B, Chen TY, Tang CH, Li DJ et al (2018) Use of statins and the risk of dementia and mild cognitive impairment: a systematic review and meta-analysis. Sci Rep 8(1):5804.  https://doi.org/10.1038/s41598-018-24248-8CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Figueiredo-Pereira ME, Corwin C, Babich J (2016) Prostaglandin J2: a potential target for halting inflammation-induced neurodegeneration. Ann N Y Acad Sci 1363:125–137PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Camargo CHF, Justus FF, Retzlaff G, Blood MRY, Schafranski MD (2015) Action of anti-TNF-α drugs on the progression of Alzheimer’s disease: a case report. Dement Neuropsychol 9(2):196–200PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Butchart J, Brook L, Hopkins V, Teeling J, Püntener U, Culliford D et al (2015) Etanercept in Alzheimer disease: a randomized, placebo-controlled, double-blind, phase 2 trial. Neurology 84(21):2161–2168PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Mazzanti G, Di Giacomo S (2016) Curcumin and resveratrol in the management of cognitive disorders: what is the clinical evidence? Molecules 21(9):pii: E1243.  https://doi.org/10.3390/molecules21091243CrossRefGoogle Scholar
  78. 78.
    Barbara R, Belletti D, Pederzoli F, Masoni M, Keller J, Ballestrazzi A et al (2017) Novel Curcumin loaded nanoparticles engineered for blood-brain barrier crossing and able to disrupt Abeta aggregates. Int J Pharm 526(1–2):413–424PubMedCrossRefGoogle Scholar
  79. 79.
    Liu QP, Wu YF, Cheng HY, Xia T, Ding H, Wang H et al (2016) Habitual coffee consumption and risk of cognitive decline/dementia: a systematic review and meta-analysis of prospective cohort studies. Nutrition 32(6):628–636PubMedCrossRefGoogle Scholar
  80. 80.
    Thaipisuttikul P, Galvin JE (2012) Use of medical foods and nutritional approaches in the treatment of Alzheimer’s disease. Clin Pract (Lond) 9(2):199–209CrossRefGoogle Scholar
  81. 81.
    Farina N, Rusted J, Tabet N (2014) The effect of exercise interventions on cognitive outcome in Alzheimer’s disease: a systematic review. Int Psychogeriatr 26(1):9–18PubMedCrossRefGoogle Scholar
  82. 82.
    Bertram S, Brixius K, Brinkmann C (2016) Exercise for the diabetic brain: how physical training may help prevent dementia and Alzheimer’s disease in T2DM patients. Endocrine 53(2):350–363PubMedCrossRefGoogle Scholar
  83. 83.
    Shankle WR, Hara J, Barrentine LW, Curole MV (2016) CerefolinNAC therapy of Hyperhomocysteinemia delays cortical and White matter atrophy in Alzheimer’s disease and cerebrovascular disease. J Alzheimers Dis 54(3):1073–1084PubMedCrossRefGoogle Scholar
  84. 84.
    Ohnuma T, Toda A, Kimoto A, Takebayashi Y, Higashiyama R, Tagata Y et al (2016) Benefits of use, and tolerance of, medium-chain triglyceride medical food in the management of Japanese patients with Alzheimer’s disease: a prospective, open-label pilot study. Clin Interv Aging 11:29–36PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Berti V, Walters M, Sterling J, Quinn CG, Logue M, Andrews R et al (2018) Mediterranean diet and 3-year Alzheimer brain biomarker changes in middle-aged adults. Neurology.  https://doi.org/10.1212/WNL.0000000000005527
  86. 86.
    Rendeiro C, Rhodes JS (2018) A new perspective of the hippocampus in the origin of exercise-brain interactions. Brain Struct Funct 223:2527.  https://doi.org/10.1007/s00429-018-1665-6CrossRefPubMedGoogle Scholar
  87. 87.
    Devenney KE, Sanders ML, Lawlor B, Olde Rikkert MGM, Schneider S, NeuroExercise Study Group (2017) The effects of an extensive exercise programme on the progression of mild cognitive impairment (MCI): study protocol for a randomised controlled trial. BMC Geriatr 17(1):75.  https://doi.org/10.1186/s12877-017-0457-9CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Karssemeijer EG, Bossers WJ, Aaronson JA, Kessels RP, Olde Rikkert MG (2017) The effect of an interactive cycling training on cognitive functioning in older adults with mild dementia: study protocol for a randomized controlled trial. BMC Geriatr 17(1):73.  https://doi.org/10.1186/s12877-017-0464-xCrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
  90. 90.
  91. 91.
    NCD Risk Factor Collaboration (NCD-RisC), Zhou B, Lu Y, Hajifathalian K, Bentham J, Di Cesare M et al (2016) Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet 387(10027):1513–1530CrossRefGoogle Scholar
  92. 92.
  93. 93.
    Seuring T, Archangelidi O, Suhrcke M (2015) The economic costs of type 2 diabetes: a global systematic review. PharmacoEconomics 33(8):811–831PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Rauseo A, Pacilli A, Palena A, De Cosmo SA (2010) Management of type 2 diabetes in geriatric patients. J Nephrol 23(Suppl 15):S72–S79PubMedGoogle Scholar
  95. 95.
    Strain WD, Hope SV, Green A, Kar P, Valabhji J, Sinclair AJ (2018) Type 2 diabetes mellitus in older people: a brief statement of key principles of modern day management including the assessment of frailty. A national collaborative stakeholder initiative. Diabet Med 35(7):838–845PubMedCrossRefGoogle Scholar
  96. 96.
  97. 97.
    Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA et al (2002) Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 346(6):393–403CrossRefGoogle Scholar
  98. 98.
    Diabetes Prevention Program Research Group; Knowler WC, Fowler SE, Hamman RF, Christophi CA, Hoffman HJ et al (2009) 10-year follow-up of diabetes incidence and weight loss in the diabetes prevention program outcomes study. Lancet 374(9702):1677–1686CrossRefGoogle Scholar
  99. 99.
    Hales CN, Barker DJ (1992) Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia 35(5):595–601PubMedCrossRefGoogle Scholar
  100. 100.
    Nielsen JH, Haase TN, Jaksch C, Nalla A, Søstrup B, Nalla AA et al (2014) Impact of fetal and neonatal environment on beta cell function and development of diabetes. Acta Obstet Gynecol Scand 93(11):1109–1122PubMedCrossRefGoogle Scholar
  101. 101.
    Vaag A, Brons C, Gillberg L, Hansen NS, HjortL AGP et al (2014) Genetic, nongenetic and epigenetic risk determinants indevelopmental programming of type 2 diabetes. Acta Obstet Gynecol Scand 93(11):1099–1108PubMedCrossRefGoogle Scholar
  102. 102.
    Coope A, Torsoni AS, Velloso L (2015) Mechanisms in endocrinology: metabolic and inflammatory pathways on the pathogenesis of type 2 diabetes. Eur J Endocrinol 174(5):R175–R187PubMedCrossRefGoogle Scholar
  103. 103.
    DeFronzo RA (1992) Pathogenesis of type2 (non-insulindependent) diabetes mellitus: a balanced overview. Diabetologia 35(4):389–397PubMedCrossRefGoogle Scholar
  104. 104.
    Perseghin G, Ghosh S, Gerow K, Shulman GI (1997) Metabolic defects in lean non diabetic offspring of NIDDM parents: a cross-sectional study. Diabetes 46(6):1001–1009PubMedCrossRefGoogle Scholar
  105. 105.
    Henriksen JE, Levin K, Thye-Rønn P, Alford F, Hother-Nielsen O, Holst JJ, Beck-Nielsen H (2000) Glucose-mediated glucose disposal in insulin-resistant normoglycemic relatives of type 2 diabetic patients. Diabetes 49(7):1209–1218PubMedCrossRefGoogle Scholar
  106. 106.
    Dimas AS, Lagou V, Barker A, Knowles JW, Mägi R, Hivert MF et al (2014) Impact of type 2 diabetes susceptibility variants on quantitative glycemic traits reveals mechanistic heterogeneity. Diabetes 63(6):2158–2171PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Domingueti CP, Dusse LM, Carvalho MD, de Sousa LP, Gomes KB, Fernandes AP (2015) Diabetes mellitus: the linkage between oxidative stress, inflammation, hypercoagulability and vascular complications. J Diabetes Complicat 30(4):738–745PubMedCrossRefGoogle Scholar
  108. 108.
    Pruzin JJ, Nelson PT, Abner EL, Arvanitakis Z (2018) Review: relationship of type 2 diabetes to human brain pathology. Neuropathol Appl Neurobiol 44(4):347–362PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Al Haj Ahmad RM, Al-Domi HA (2018) Thinking about brain insulin resistance. Diabetes Metab Syndr 12(6):1091–1094PubMedCrossRefGoogle Scholar
  110. 110.
    Zhang S, Jamaspishvili E, Tong H, Chen Y, Zhou Z, Sun L et al (2019) East Asian Genome-wide association study derived loci in relation to type 2 diabetes in the Han Chinese population. Acta Biochim Pol.  https://doi.org/10.18388/abp.2018_2632
  111. 111.
    FIND Consortium, Guan M, Keaton JM, Dimitrov L, Hicks PJ, Xu J et al (2019) Genome-wide association study identifies novel loci for type 2 diabetes-attributed end-stage kidney disease in African Americans. Hum Genomics 13(1):21.  https://doi.org/10.1186/s40246-019-0205-7CrossRefGoogle Scholar
  112. 112.
    Tang Y, Lenzini PA, Busui RP, Ray PR, Campbell H, Perkins BA et al (2019) A genetic locus on chromosome 2q24 predicting peripheral neuropathy risk in type 2 diabetes: results from the ACCORD and BARI 2D studies. Diabetes 68(8):1649–1662.  https://doi.org/10.2337/db19-0109CrossRefPubMedGoogle Scholar
  113. 113.
    Azzam SK, Osman WM, Lee S, Khalaf K, Khandoker AH, Almahmeed W et al (2019) Genetic associations with diabetic retinopathy and coronary artery disease in Emirati patients with Type-2 diabetes mellitus. Front Endocrinol (Lausanne) 10:283.  https://doi.org/10.3389/fendo.2019.00283CrossRefGoogle Scholar
  114. 114.
    Chung SJ, Kim MJ, Kim J, Ryu HS, Kim YJ, Kim SY et al (2015) Association of type 2 diabetes GWAS loci and the risk of Parkinson’s and Alzheimer’s diseases. Parkinsonism Relat Disord 21(12):1435–1440PubMedCrossRefGoogle Scholar
  115. 115.
    Li Z, Chen P, Chen J, Xu Y, Wang Q, Li X et al (2018) Glucose and insulin-related traits, type 2 diabetes and risk of schizophrenia: a Mendelian randomization study. EBioMedicine 34:182–188PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Steyn NP, Mann J, Bennett PH, Temple N, Zimmet P, Tuomilehto J et al (2004) Diet, nutrition and the prevention of type 2 diabetes. Public Health Nutr 7(1A):147–165PubMedCrossRefGoogle Scholar
  117. 117.
    Mattei J, Malik V, Wedick NM, Hu FB, Spiegelman D, Willett WC et al (2015) Reducing the global burden of type 2 diabetes by improving the quality of staple foods: the global nutrition and epidemiologic transition initiative. Glob Health 11:23.  https://doi.org/10.1186/s12992-015-0109-9CrossRefGoogle Scholar
  118. 118.
  119. 119.
    Tuomilehto J, Lindstrom J, Eriksson JG, Valle TT, Hamalainen H, Ilanne-Parikka P (2001) Prevention of type 2 diabetes mellitus by changes in life style among subjects with impaired glucose tolerance. N Engl J Med 344(18):1343–1350PubMedCrossRefGoogle Scholar
  120. 120.
    Sundsten T, Eberhardson M, Göransson M, Bergsten P (2006) The use of proteomics in identifying differentially expressed serum proteins in humans with type 2 diabetes. Proteome Sci 4(22):22.  https://doi.org/10.1186/1477-5956-4-22CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Riaz S, Alam SS, Akhtar MW (2010) Proteomic identification of human serum biomarkers in diabetes mellitus type 2. J Pharm Biomed Anal 51(5):1103–1107PubMedCrossRefGoogle Scholar
  122. 122.
    Bhonsle HS, Korwar AM, Chougale AD, Kote SS, Dhande NL, Shelgikar KM et al (2013) Proteomic study reveals downregulation of apolipoprotein A1 in plasma of poorly controlled diabetes: a pilot study. Mol Med Rep 7(2):495–498PubMedCrossRefGoogle Scholar
  123. 123.
    Mao P, Wang D (2014) Top-down proteomics of a drop of blood for diabetes monitoring. J Proteome Res 13(3):1560–1569PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Walford GA, Porneala BC, Dauriz M, Vassy JL, Cheng S, Rhee EP, Wang TJ, Meigs JB, Gerszten RE, Florez JC (2014) Metabolite traits and genetic risk provide complementary information for the prediction of future type 2 diabetes. Diabetes Care 37(9):2508–2514PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Floegel A, Stefan N, Yu Z, Mühlenbruch K, Drogan D, Joost HG et al (2013) Identification of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomic approach. Diabetes 62(2):639–648PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe E et al (2011) Metabolite profiles and the risk of developing diabetes. Nat Med 17(4):448–453PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Nawaz SS, Siddiqui K (2019) The emerging role of branch chain amino acids in the prediction of diabetes: a brief review. Curr Diabetes Rev 15.  https://doi.org/10.2174/1573399815666190502113632
  128. 128.
    Padberg I, Peter E, González-Maldonado S, Witt H, Mueller M, Weis T et al (2014) A new metabolomic signature in type-2 diabetes mellitus and its pathophysiology. PLoS One 9:e85082.  https://doi.org/10.1371/journal.pone.0085082CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Ferrannini E, Natali A, Camastra S, Nannipieri M, Mari A, Adam KP et al (2013) Early metabolic markers of the development of dysglycemia and type 2 diabetes and their physiological significance. Diabetes 62(5):1730–1737PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Erion DM, Park HJ, Lee HY (2016) The role of lipids in the pathogenesis and treatment of type 2 diabetes and associated co-morbidities. BMB Rep 49(3):139–148PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    SUMMIT Consortium; Shore AC, Colhoun HM, Natali A, Palombo C, Khan F et al (2018) Use of vascular assessments and novel biomarkers to predict cardiovascular events in type 2 diabetes: the SUMMIT VIP study. Diabetes Care 41(10):2212–2219CrossRefGoogle Scholar
  132. 132.
    EXAMINE Investigators, Vaduganathan M, White WB, Charytan DM, Morrow DA, Liu Y et al (2019) Relation of serum and urine renal biomarkers to cardiovascular risk in patients with type 2 diabetes mellitus and recent acute coronary syndromes (from the EXAMINE trial). Am J Cardiol 123(3):382–391CrossRefGoogle Scholar
  133. 133.
    Mogensen CE, Neldam S, Tikkanen I, Oren S, Viskoper R, Watts RW et al (2000) Randomised controlled trial of dual blockade of renin–angiotensin system in patients with hypertension, microalbuminuria, and non-insulin dependent diabetes: the candesartan and lisinoprilmicroalbuminuria (CALM) study. Br Med J 321(7274):1440–1444CrossRefGoogle Scholar
  134. 134.
    Ninomiya T, Perkovic V, de Galan BE, Zoungas S, Pillai A, Jardine M et al (2009) Albuminuria and kidney function independently predict cardiovascular and renal outcomes in diabetes. J Am Soc Nephrol 20(8):1813–1821PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    van der Velde M, Halbesma N, de Charro FT, Bakker SJ, de Zeeuw D, de Jong PE et al (2009) Screening for albuminuria identifies individuals at increased renal risk. J Am Soc Nephrol 20(4):852–862PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Kazumi T, Hozumi T, Ishida Y, Ikeda Y, Kishi K, Hayakawa M et al (1999) Increased urinary transferrin excretion predicts microalbuminuria in patients with type 2 diabetes. Diabetes Care 22(7):1176–1180PubMedCrossRefGoogle Scholar
  137. 137.
    Narita T, Hosoba M, Kakei M, Ito S (2006) Increased urinary excretions of immunoglobulin G, ceruloplasmin, and transferrin predict development of microalbuminuria in patients with type 2 diabetes. Diabetes Care 29(1):142–144PubMedCrossRefGoogle Scholar
  138. 138.
    Araki S, Haneda M, Koya D, Sugimoto T, Isshiki K, Chin-Kanasaki M et al (2007) Predictive impact of elevated serum level of IL-18 for early renal dysfunction in type 2 diabetes: an observational follow-up study. Diabetologia 50(4):867–873PubMedCrossRefGoogle Scholar
  139. 139.
    Hanai K, Babazono T, Nyumura I, Toya K, Tanaka N, Tanaka M et al (2009) Asymmetric dimethylarginine is closely associated with the development and progression of nephropathy in patients with type 2 diabetes. Nephrol Dial Transplant 24(6):1884–1888PubMedCrossRefGoogle Scholar
  140. 140.
    Persson F, Rossing P, Hovind P, Stehouwer CD, Schalkwijk CG, Tarnow L et al (2008) Endothelial dysfunction and inflammation predict development of diabetic nephropathy in the Irbesartan in patients with type 2 diabetes and microalbuminuria (IRMA 2) study. Scand J Clin Lab Invest 68(8):731–738PubMedCrossRefGoogle Scholar
  141. 141.
    Liu J, Zhao Z, Willcox MD, Xu B, Shi B (2010) Multiplex bead analysis of urinary cytokines of type 2 diabetic patients with normo- and microalbuminuria. J Immunoassay Immunochem 31(4):279–289PubMedCrossRefGoogle Scholar
  142. 142.
    Sharma K, Karl B, Mathew AV, Gangoiti JA, Wassel CL, Saito R et al (2013) Metabolomics reveals signature of mitochondrial dysfunction in diabetic kidney disease. J Am Soc Nephrol 24(11):1901–1912PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Niewczas MA, Sirich TL, Mathew AV, Skupien J, Mohney RP, Warram JH et al (2014) Uremic solutes and risk of end-stage renal disease in type 2 diabetes: metabolomic study. Kidney Int 85(5):1214–1224PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    BEAt-DKD Consortium; Heinzel A, Kammer M, Mayer G, Reindl-Schwaighofer R, Hu K et al (2018) Validation of plasma biomarker candidates for the prediction of eGFR decline in patients with type 2 diabetes. Diabetes Care 41(9):1947–1954CrossRefGoogle Scholar
  145. 145.
    Rodriguez-Romero V, Bergstrom RF, Decker BS, Lahu G, Vakilynejad M, Bies RR (2019) Prediction of nephropathy in type 2 diabetes: an analysis of the ACCORD trial applying machine learning techniques. Clin Transl Sci 12:519.  https://doi.org/10.1111/cts.12647CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
  147. 147.
    Cardiovascular Health Study Collaborative Research Group; Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C et al (2001) Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci 56(3):M146–M156CrossRefGoogle Scholar
  148. 148.
    Rockwood K, Mitnitski A (2007) Frailty in relation to the accumulation of deficits. J Gerontol A Biol Sci Med Sci 62(7):722–727CrossRefGoogle Scholar
  149. 149.
    Brunner EJ, Shipley MJ, Ahmadi-Abhari S, Valencia Hernandez C, Abell JG, Singh-Manoux A et al (2018) Midlife contributors to socioeconomic differences in frailty during later life: a prospective cohort study. Lancet Public Health 3(7):e313–e322PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Hanlon P, Nicholl BI, Jani BD, Lee D, McQueenie R, Mair FS (2018) Frailty and pre-frailty in middle-aged and older adults and its association with multimorbidity and mortality: a prospective analysis of 493 737 UK biobank participants. Lancet Public Health 3(7):e323–e332PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Clegg A, Young J, Iliffe S, Rikkert MO, Rockwood K (2013) Frailty in elderly people. Lancet 381(9868):752–762PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Santilli V, Bernetti A, Mangone M, Paoloni M (2014) Clinical definition of sarcopenia. Clin Cases Miner Bone Metab 11(3):177–180PubMedPubMedCentralGoogle Scholar
  153. 153.
    Fried L, Walston J (1998) Frailty and failure to thrive. In: Hazzard WR, Blass JP, Ettinger WH Jr, Halter JB, Ouslander JG (eds) Principles of geriatric medicine and gerontology, vol 4th edn. McGraw-Hill Education (ISE Editions), New York, NY, pp 1387–1402. ISBN-10: 0071157549Google Scholar
  154. 154.
    Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F et al (2010) Sarcopenia: European consensus on definition and diagnosis-report of the European working group on sarcopenia in older people. Age Ageing 39:412–423PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Muscaritoli M, Anker SD, Argiles J, Aversa Z, Bauer JM, Biolo G et al (2010) Consensus definition of sarcopenia, cachexia and pre-cachexia: joint document elaborated by special interest groups (SIG) “cachexia-anorexia in chronic wasting diseases” and “nutrition in geriatrics”. Clin Nutr 29:154–159PubMedCrossRefGoogle Scholar
  156. 156.
    Fielding RA, Vellas B, Evans WJ, Bhasin S, Morley JE, Newman AB et al (2011) Sarcopenia: an undiagnosed condition in older adults—current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia. J Am Med Dir Assoc 12:249–256CrossRefGoogle Scholar
  157. 157.
    Rizzoli R, Reginster JY, Arnal JF, Bautmans I, Beaudart C, Bischoff-Ferrari H et al (2013) Quality of life in sarcopenia and frailty. Calcif Tissue Int 93(2):101–120PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Beaudart C, McCloskey E, Bruyère O, Cesari M, Rolland Y, Rizzoli R et al (2016) Sarcopenia in daily practice: assessment and management. BMC Geriatr 16(1):170.  https://doi.org/10.1186/s12877-016-0349-4CrossRefPubMedPubMedCentralGoogle Scholar
  159. 159.
    Rich MW, Shah AS, Vinson JM, Freedland KE, Kuru T, Sperry JC (1996) Iatrogenic congestive heart failure in older adults: clinical course and prognosis. J Am Geriatrics Soc 44(6):638–643CrossRefGoogle Scholar
  160. 160.
    Ferrucci L, Cavazzini C, Corsi A, Bartali B, Russo CR, Lauretani F et al (2002) Biomarkers of frailty in older persons. J Endocrinol Investig 25(10 Suppl):10–15Google Scholar
  161. 161.
    Cardoso AL, Fernandes A, Aguilar-Pimentel JA, de Angelis MH, Guedes JR, Brito MA et al (2018) Towards frailty biomarkers: candidates from genes and pathways regulated in aging and age-related diseases. Ageing Res Rev 47:214–277PubMedCrossRefGoogle Scholar
  162. 162.
    Peterson MD, Sen A, Gordon PM (2011) Influence of resistance exercise on lean body mass in aging adults: a meta-analysis. Med Sci Sport Exerc 43(2):249–258CrossRefGoogle Scholar
  163. 163.
    Cruz-Jentoft AJ, Landi F, Schneider SM, Zúñiga C, Arai H, Boirie Y et al (2014) Prevalence of and interventions for sarcopenia in ageing adults: a systematic review. Report of the international sarcopenia initiative (EWGSOP and IWGS). Age Ageing 43(6):748–759PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    von Berens Å, Fielding RA, Gustafsson T, Kirn D, Laussen J, Nydahl M et al (2018) Effect of exercise and nutritional supplementation on health-related quality of life and mood in older adults: the VIVE2 randomized controlled trial. BMC Geriatr 18(1):286.  https://doi.org/10.1186/s12877-018-0976-zCrossRefGoogle Scholar
  165. 165.
    Liao CD, Chen HC, Huang SW, Liou TH (2019) The role of muscle mass gain following protein supplementation plus exercise therapy in older adults with sarcopenia and frailty risks: a systematic review and meta-regression analysis of randomized trials. Nutrients 11(8):pii: E1713.  https://doi.org/10.3390/nu11081713CrossRefGoogle Scholar
  166. 166.
    Sahni S, Mangano KM, Hannan MT, Kiel DP, McLean RR (2015) Higher protein intake is associated with higher lean mass and quadriceps muscle strength in adult men and women. J Nutr 145:1569–1575PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Genaro Pde S, Pinheiro Mde M, Szejnfeld VL, Martini LA (2015) Dietary protein intake in elderly women: association with muscle and bone mass. Nutr Clin Pract 30:283–289PubMedCrossRefGoogle Scholar
  168. 168.
    Bauer J, Biolo G, Cederholm T, Cesari M, Cruz-Jentoft AJ, Morley JE et al (2013) J Am Med Dir Assoc 14:542–559PubMedCrossRefGoogle Scholar
  169. 169.
    Deer RR, Volpi E (2015) Protein intake and muscle function in older adults. Curr Opin Clin Nutr Metab Care 18:248–253PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Buigues C, Fernández-Garrido J, Pruimboom L, Hoogland AJ, Navarro-Martínez R, Martínez-Martínez M et al (2016) Effect of a prebiotic formulation on frailty syndrome: a randomized, double-blind clinical trial. Int J Mol Sci 17(6):pii: E932.  https://doi.org/10.3390/ijms17060932CrossRefGoogle Scholar
  171. 171.
    Cruz-Jentoft AJ, Woo J (2019) Nutritional interventions to prevent and treat frailty. Curr Opin Clin Nutr Metab Care 22(3):191–195PubMedCrossRefGoogle Scholar
  172. 172.
    Long DE, Peck BD, Martz JL, Tuggle SC, Bush HM, McGwin G et al (2017) Metformin to augment strength training effective response in seniors (MASTERS): study protocol for a randomized controlled trial. Trials 18(1):192.  https://doi.org/10.1186/s13063-017-1932-5CrossRefPubMedPubMedCentralGoogle Scholar
  173. 173.
    Zhang YJ, Wang JX, Fu SH, Li XY (2019) Trimetazidine in angina and poor muscle function: protocol for a randomized controlled study. Chin Med J 132(12):1461–1466PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Paul C. Guest
    • 1
  1. 1.Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of BiologyUniversity of Campinas (UNICAMP)CampinasBrazil

Personalised recommendations