Quantum Dots pp 125-139 | Cite as

Phase Transfer and DNA Functionalization of Quantum Dots Using an Easy-to-Prepare, Low-Cost Zwitterionic Polymer

  • Margaret Chern
  • Chloe Grazon
  • Allison M. DennisEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 2135)


Small, stable, and bright quantum dots (QDs) are of interest in many biosensing and biomedical imaging applications, but current methodologies for obtaining these characteristics can be highly specialized or expensive. We describe a straightforward, low-cost protocol for functionalizing poly(isobutylene-alt-maleic anhydride) (PIMA) with moieties that anchor to the QD surface (histamine), impart hydrophilicity [(2-aminoethyl)trimethylammonium chloride (Me3N+-NH2)], and provide a platform for biofunctionalization via click chemistry (dibenzocyclooctyne (DBCO)). Guidelines to successfully use this polymer for QD ligand exchange are presented, and an example of biofunctionalization with DNA is shown. Stable QD–DNA conjugates are obtained with high yield and without requiring additional purification steps.

Key words

DNA labeling Copper-free click chemistry Biofunctionalization Nanoparticle Carboxybetaine Poly(isobutylene-alt-maleic anhydride)—PIMA 


  1. 1.
    Medintz IL, Uyeda HT, Goldman ER et al (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435–446CrossRefGoogle Scholar
  2. 2.
    Karakoti AS, Shukla R, Shanker R et al (2015) Surface functionalization of quantum dots for biological applications. Adv Colloid Interf Sci 215:28–45CrossRefGoogle Scholar
  3. 3.
    Zhou J, Liu Y, Tang J et al (2017) Surface ligands engineering of semiconductor quantum dots for chemosensory and biological applications. Mater Today 20:360–376CrossRefGoogle Scholar
  4. 4.
    Chern M, Nguyen TT, Mahler AH et al (2017) Shell thickness effects on quantum dot brightness and energy transfer. Nanoscale 9:16446–16458CrossRefGoogle Scholar
  5. 5.
    Dennis AM, Sotto DC, Mei BC et al (2010) Surface ligand effects on metal-affinity coordination to quantum dots: Implications for nanoprobe self-assembly. Bioconjug Chem 21:1160–1170CrossRefGoogle Scholar
  6. 6.
    Medintz IL, Huston AL, Susumu K et al (2013) Optimizing protein coordination to quantum dots with designer peptidyl linkers. Bioconjug Chem 24:269–281CrossRefGoogle Scholar
  7. 7.
    Zhan N, Palui G, Safi M et al (2013) Multidentate zwitterionic ligands provide compact and highly biocompatible quantum dots. J Am Chem Soc 135:13786–13795CrossRefGoogle Scholar
  8. 8.
    Mattoussi H, Uyeda HTT, Medintz ILIL et al (2005) Synthesis of compact multidentate ligands to prepare stable hydrophilic quantum dot fluorophores. J Am Chem Soc 127:3870–3878CrossRefGoogle Scholar
  9. 9.
    Ma L, Tu C, Le P et al (2016) Multidentate polymer coatings for compact and homogeneous quantum dots with efficient bioconjugation. J Am Chem Soc 138:3382–3394CrossRefGoogle Scholar
  10. 10.
    Susumu K, Oh E, Delehanty JB et al (2014) A new family of pyridine-appended multidentate polymers as hydrophilic surface ligands for preparing stable biocompatible quantum dots. Chem Mater 26:5327–5344CrossRefGoogle Scholar
  11. 11.
    Wang W, Kapur A, Ji X et al (2015) Photoligation of an amphiphilic polymer with mixed coordination provides compact and reactive quantum dots. J Am Chem Soc 137:5438–5451CrossRefGoogle Scholar
  12. 12.
    Mattoussi H, Wang W (2016) Multifunctional and multicoordinating amphiphilic polymer ligands for interfacing semiconducting, magnetic, and metallic nanocrystals with biological systems.
  13. 13.
    Du L, Wang W, Zhang C et al (2018) A versatile coordinating ligand for coating semiconductor, metal, and metal oxide nanocrystals. Chem Mater 30:7269–7279CrossRefGoogle Scholar
  14. 14.
    Wang W, Aldeek F, Ji X et al (2014) A multifunctional amphiphilic polymer as a platform for surface-functionalizing metallic and other inorganic nanostructures. Faraday Discuss 175:137–151CrossRefGoogle Scholar
  15. 15.
    Wang W, Ji X, Kapur A et al (2015) A multifunctional polymer combining the imidazole and zwitterion motifs as a biocompatible compact coating for quantum dots. J Am Chem Soc 137:14158–14172CrossRefGoogle Scholar
  16. 16.
    Wang W, Kapur A, Ji X et al (2016) Multifunctional and high affinity polymer ligand that provides bio-orthogonal coating of quantum dots. Bioconjug Chem 27:2024–2036CrossRefGoogle Scholar
  17. 17.
    Grazon C, Chern M, Ward K et al (2019) A versatile and accessible polymer coating for functionalizable zwitterioinic quantum dots with high DNA grafting efficiency. Chem Commun 55:11067-11070Google Scholar
  18. 18.
    Banerjee A, Grazon C, Nadal B et al (2015) Fast, efficient, and stable conjugation of multiple DNA strands on colloidal quantum dots. Bioconjug Chem 26:1582–1589CrossRefGoogle Scholar
  19. 19.
    Banerjee A, Pons T, Lequeux N et al (2016) Quantum dots-DNA bioconjugates: synthesis to applications. Interface Focus 6:20160064CrossRefGoogle Scholar
  20. 20.
    Reiss P, Protière M, Li L (2009) Core/shell semiconductor nanocrystals. Small 5:154–168CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Margaret Chern
    • 1
  • Chloe Grazon
    • 2
    • 3
  • Allison M. Dennis
    • 1
    • 4
    Email author
  1. 1.Division of Materials Science and EngineeringBoston UniversityBostonUSA
  2. 2.Department of ChemistryBoston UniversityBostonUSA
  3. 3.CNRS, Bordeaux INP, LCPO, UMR 5629University of BordeauxPessacFrance
  4. 4.Department of Biomedical EngineeringBoston UniversityBostonUSA

Personalised recommendations