Advertisement

Vaccine Design Against Leptospirosis Using an Immunoinformatic Approach

  • Kumari Snehkant Lata
  • Vibhisha Vaghasia
  • Shivarudrappa Bhairappanvar
  • Saumya Patel
  • Jayashankar Das
Protocol
  • 112 Downloads
Part of the Methods in Molecular Biology book series (MIMB, volume 2131)

Abstract

Vaccination is the best way to prevent the spread of emerging or reemerging infectious disease. Current research for vaccine development is mainly focused on recombinant-, subunit-, and peptide-based vaccine. At this point, immunoinformatics has been proven as a powerful method for identification of potential vaccine candidates, by analyzing immunodominat B- and T-cell epitopes. This method can reduce the time and cost of experiment to a great extent, by reducing the number of vaccine candidates for experimental testing for their efficacy. This chapter describes the use of immunoinformatics and molecular docking methods to screen potential vaccine candidates by taking Leptospira as a model.

Key words

Immunoinformatics Immunogenicity Leptospirosis Outer membrane protein Epitopes Vaccine candidate Molecular docking Simulation Binding interaction 

References

  1. 1.
    Vijayachari P, Sugunan AP, Shriram AN (2008) Leptospirosis: an emerging global public health problem. J Biosci 33(4):557–569PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Adler B, de la Peña Moctezuma A (2010) Leptospira and leptospirosis. Vet Microbiol 140(3–4):287–296PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Lata KS, Kumar S, Vaghasia V et al (2018) Exploring Leptospiral proteomes to identify potential candidates for vaccine design against leptospirosis using an immunoinformatics approach. Sci Rep 8(1):6935PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Levett PN (2015) Systematics of leptospiraceae. In: Leptospira and leptospirosis. Springer, Berlin, Heidelberg, pp 11–20Google Scholar
  5. 5.
    Adler B (2015) Vaccines against leptospirosis. In: Leptospira and leptospirosis. Springer, Berlin, Heidelberg, pp 251–272Google Scholar
  6. 6.
    Ellis WA (2015) Animal leptospirosis. In: Leptospira and leptospirosis. Springer, Berlin, Heidelberg, pp 99–137Google Scholar
  7. 7.
    Wang Z, Jin L, Węgrzyn A (2007) Leptospirosis vaccines. Microb Cell Factories 6(1):39CrossRefGoogle Scholar
  8. 8.
    Tomar N, De RK (2010) Immunoinformatics: an integrated scenario. Immunology 131(2):153–168PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    De Gregorio E, Rappuoli R (2012) Vaccines for the future: learning from human immunology. Microb Biotechnol 5(2):149–155PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Patronov A, Doytchinova I (2013) T-cell epitope vaccine design by immunoinformatics. Open Biol 3(1):120139PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Yang X, Yu X (2009) An introduction to epitope prediction methods and software. Rev Med Virol 19(2):77–96PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Dellagostin O, Grassmann A, Rizzi C et al (2017) Reverse vaccinology: an approach for identifying leptospiral vaccine candidates. Int J Mol Sci 18(1):158PubMedCentralCrossRefGoogle Scholar
  13. 13.
    Chaudhuri R, Ramachandran S (2017) Immunoinformatics as a tool for new antifungal vaccines. In: Kalkum M, Semis M (eds) Methods and protocols. Methods in molecular biology, vol 1625. Springer, Heidelberg, pp 31–43Google Scholar
  14. 14.
    Davies MN, Flower DR (2007) Harnessing bioinformatics to discover new vaccines. Drug Discov Today 12(9–10):389–395PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Groot ASD, Rappuoli R (2004) Genome-derived vaccines. Expert Rev Vaccines 3(1):59–76PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Doytchinova IA, Flower DR (2007) VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics 8(1):4PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Lin J, Huang S, Zhang Q (2002) Outer membrane proteins: key players for bacterial adaptation in host niches. Microbes Infect 4(3):325–331PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Rodríguez-Ortega MJ, Norais N, Bensi G et al (2006) Characterization and identification of vaccine candidate proteins through analysis of the group A Streptococcus surface proteome. Nat Biotechnol 24(2):191PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Yu CS, Lin CJ, Hwang JK (2004) Predicting subcellular localization of proteins for Gram-negative bacteria by support vector machines based on n-peptide compositions. Protein Sci 13(5):1402–1406PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Yu CS, Chen YC, Lu CH, Hwang JK (2006) Prediction of protein subcellular localization. Proteins 64(3):643–651PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Nair DT, Singh K, Siddiqui Z et al (2002) Epitope recognition by diverse antibodies suggests conformational convergence in an antibody response. J Immunol 168(5):2371–2382PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Paul WE (2012) Fundamental immunology. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  23. 23.
    Jespersen MC, Peters B, Nielsen M, Marcatili P (2017) BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Res 45(W1):W24–W29PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Kolaskar AS, Tongaonkar PC (1990) A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS Lett 276(1–2):172–174PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Fieser TM, Tainer JA, Geysen HM, Houghten RA, Lerner RA (1987) Influence of protein flexibility and peptide conformation on reactivity of monoclonal anti-peptide antibodies with a protein alpha-helix. Proc Natl Acad Sci 84(23):8568–8572PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Emini EA, Hughes JV, Perlow D, Boger J (1985) Induction of hepatitis a virus-neutralizing antibody by a virus-specific synthetic peptide. J Virol 55(3):836–839PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Karplus PA, Schulz GE (1985) Prediction of chain flexibility in proteins. Naturwissenschaften 72(4):212–213CrossRefGoogle Scholar
  28. 28.
    Parker JMR, Guo D, Hodges RS (1986) New hydrophilicity scale derived from high-performance liquid chromatography peptide retention data: correlation of predicted surface residues with antigenicity and X-ray-derived accessible sites. Biochemistry 25(19):5425–5432CrossRefGoogle Scholar
  29. 29.
    Ponomarenko J, Bui HH, Li W et al (2008) ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics 9(1):514PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Sanchez-Trincado JL, Gomez-Perosanz M, Reche PA (2017) Fundamentals and methods for T-and B-cell epitope prediction. J Immunol Res 2017:2680160PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Chen K, Kolls JK (2013) T cell–mediated host immune defenses in the lung. Annu Rev Immunol 31:605–633PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Karosiene E, Rasmussen M, Blicher T et al (2013) NetMHCIIpan-3. 0, a common pan-specific MHC class II prediction method including all three human MHC class II isotypes, HLA-DR, HLA-DP and HLA-DQ. Immunogenetics 65(10):711–724PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Lazarski CA, Chaves FA, Jenks SA et al (2005) The kinetic stability of MHC class II: peptide complexes is a key parameter that dictates immunodominance. Immunity 23(1):29–40PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Weber CA, Mehta PJ, Ardito M et al (2009) T cell epitope: friend or foe? Immunogenicity of biologics in context. Adv Drug Deliv Rev 61(11):965–976PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Fraga TR, Barbosa AS, Isaac L (2011) Leptospirosis: aspects of innate immunity, immunopathogenesis and immune evasion from the complement system. Scand J Immunol 73(5):408–419PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Larsen MV, Lundegaard C, Lamberth K et al (2007) Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinformatics 8(1):424PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Dhanda S, Karosiene E, Edwards L et al (2018) Predicting HLA CD4 immunogenicity in human populations. Front Immunol 9:1369PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Calis JJ, Maybeno M, Greenbaum JA et al (2013) Properties of MHC class I presented peptides that enhance immunogenicity. PLoS Comput Biol 9(10):e1003266PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Muh HC, Tong JC, Tammi MT (2009) AllerHunter: a SVM-pairwise system for assessment of allergenicity and allergic cross-reactivity in proteins. PLoS One 4(6):e5861PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Bui HH, Sidney J, Li W et al (2007) Development of an epitope conservancy analysis tool to facilitate the design of epitope-based diagnostics and vaccines. BMC Bioinformatics 8(1):361PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Hildesheim A, Apple RJ, Chen CJ et al (2002) Association of HLA class I and II alleles and extended haplotypes with nasopharyngeal carcinoma in Taiwan. J Natl Cancer Inst 94(23):1780–1789PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Rivoltini L, Loftus DJ, Barracchini K et al (1996) Binding and presentation of peptides derived from melanoma antigens MART-1 and glycoprotein-100 by HLA-A2 subtypes. Implications for peptide-based immunotherapy. J Immunol 156(10):3882–3891PubMedPubMedCentralGoogle Scholar
  43. 43.
    Lamiable A, Thévenet P, Rey J et al (2016) PEP-FOLD3: faster de novo structure prediction for linear peptides in solution and in complex. Nucleic Acids Res 44(W1):W449–W454PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Andrusier N, Nussinov R, Wolfson HJ (2007) FireDock: fast interaction refinement in molecular docking. Proteins 69(1):139–159PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Mashiach E, Schneidman-Duhovny D, Andrusier N et al (2008) FireDock: a web server for fast interaction refinement in molecular docking. Nucleic Acids Res 36(suppl_2):W229–W232PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Berendsen HJ, van der Spoel D, van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91(1–3):43–56CrossRefGoogle Scholar
  47. 47.
    Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    DeLano WL (2002) The PyMOL molecular graphics system. http://www.pymol.org

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Kumari Snehkant Lata
    • 1
    • 2
  • Vibhisha Vaghasia
    • 1
    • 2
  • Shivarudrappa Bhairappanvar
    • 1
  • Saumya Patel
    • 2
  • Jayashankar Das
    • 1
  1. 1.Gujarat Biotechnology Research Centre, Department of Science and TechnologyGovernment of GujaratGandhinagarIndia
  2. 2.Department of Botany, Bioinformatics and Climate ChangeGujarat UniversityAhmedabadIndia

Personalised recommendations