Advertisement

AAgAtlas 1.0: A Database of Human Autoantigens Extracted from Biomedical Literature

  • Dan Wang
  • Yupeng Zhang
  • Qing Meng
  • Xiaobo YuEmail author
Protocol
  • 110 Downloads
Part of the Methods in Molecular Biology book series (MIMB, volume 2131)

Abstract

Autoantibodies are antibodies against host self-proteins (autoantigens), which play significant roles in homeostasis maintenance and diseases with autoimmune disorders. Numerous papers were published in the past decade on the identification of human autoantigens in different human diseases. However, there is no consensus collection with all the reported autoantigens yet. To address this need, previously we developed a human autoantigen database, AAgAtlas 1.0, by text-mining and manual curation, which collects 1126 autoantigens associated with 1071 human diseases. AAgAtlas 1.0 provides a user-friendly interface to conveniently browse, retrieve, and download human autoantigen genes, their functional annotation, related diseases, and the evidence from the literature. AAgAtlas is freely available online http://biokb.ncpsb.org/aagatlas/. In this chapter, we make an introduction and provide a guide to the users of AAgAtlas 1.0 database.

Key words

Database Autoantibody Autoantigen Autoimmune disease Cancer Biomarker Diagnosis Therapeutic treatment 

Notes

Acknowledgments

This work was supported by the Chinese National Major Project for New Drug Innovation (2018ZX09733003), National Key Basic Research Project (2018YFA0507503, 2017YFC0906703), National Natural Science Foundation of China (81673040 and 31870823), State Key Laboratory of Proteomics (SKLP-O201703 and SKLP-K201505), and Capital’s Funds for Health Improvement and Research (2018-2-4034).

References

  1. 1.
    Ludwig RJ, Vanhoorelbeke K, Leypoldt F et al (2017) Mechanisms of autoantibody-induced pathology. Front Immunol 8:603.  https://doi.org/10.3389/fimmu.2017.00603CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Plotz PH (2003) The autoantibody repertoire: searching for order. Nat Rev Immunol 3(1):73–78.  https://doi.org/10.1038/nri976CrossRefPubMedGoogle Scholar
  3. 3.
    Wang X, Yu J, Sreekumar A et al (2005) Autoantibody signatures in prostate cancer. N Engl J Med 353(12):1224–1235.  https://doi.org/10.1056/NEJMoa051931CrossRefPubMedGoogle Scholar
  4. 4.
    Wang D, Yang L, Zhang P et al (2017) AAgAtlas 1.0: a human autoantigen database. Nucleic Acids Res 45(D1):D769–D776.  https://doi.org/10.1093/nar/gkw946CrossRefPubMedGoogle Scholar
  5. 5.
    Nolan E, Lindeman GJ, Visvader JE (2017) Out-RANKing BRCA1 in mutation carriers. Cancer Res 77(3):595–600.  https://doi.org/10.1158/0008-5472.CAN-16-2025CrossRefPubMedGoogle Scholar
  6. 6.
    Melchor L, Benitez J (2013) The complex genetic landscape of familial breast cancer. Hum Genet 132(8):845–863.  https://doi.org/10.1007/s00439-013-1299-yCrossRefPubMedGoogle Scholar
  7. 7.
    Zhu Q, Han SX, Zhou CY et al (2015) Autoimmune response to PARP and BRCA1/BRCA2 in cancer. Oncotarget 6(13):11575–11584.  https://doi.org/10.18632/oncotarget.3428CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Chapman C, Murray A, Chakrabarti J et al (2007) Autoantibodies in breast cancer: their use as an aid to early diagnosis. Ann Oncol 18(5):868–873.  https://doi.org/10.1093/annonc/mdm007CrossRefPubMedGoogle Scholar
  9. 9.
    McGuire A, Brown JA, Malone C et al (2015) Effects of age on the detection and management of breast cancer. Cancers (Basel) 7(2):908–929.  https://doi.org/10.3390/cancers7020815CrossRefGoogle Scholar
  10. 10.
    Schairer C, Pfeiffer RM, Gadalla SM (2018) Autoimmune diseases and breast cancer risk by tumor hormone-receptor status among elderly women. Int J Cancer 142(6):1202–1208.  https://doi.org/10.1002/ijc.31148CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center)Beijing Institute of LifeomicsBeijingChina

Personalised recommendations