Advertisement

An Immunoinformatics Approach in Design of Synthetic Peptide Vaccine Against Influenza Virus

  • Neha Lohia
  • Manoj Baranwal
Protocol
  • 118 Downloads
Part of the Methods in Molecular Biology book series (MIMB, volume 2131)

Abstract

Peptide-based vaccines are an appealing strategy which involves usage of short synthetic peptides to engineer a highly targeted immune response. These short synthetic peptides contain potential T- and B-cell epitopes. Experimental approaches in identifying these epitopes are time-consuming and expensive; hence immunoinformatics approach came into picture. Immuninformatics approach involves epitope prediction tools, molecular docking, and population coverage analysis in design of desired immunogenic peptides. In order to overcome the antigenic variation of viruses, conserved regions are targeted to find the potential epitopes. The present chapter demonstrates the use of immunoinformatics approach to select potential peptide containing multiple T- (CD8+ and CD4+) and B-cell epitopes from Avian H3N2 M1 Protein. Further, molecular docking (to analyse HLA-peptide interaction) and population coverage analysis have been used to verify the potential of peptide to be presented by polymorphic HLA molecules. In silico approach of epitope prediction has proven to be successful methodology in screening the putative epitopes among numerous possible vaccine targets in a given protein.

Key words

Conservation Influenza epitope BLASTp Peptide-based vaccine Epitope prediction Docking Population coverage 

References

  1. 1.
    Tong S, Zhu X, Li Y et al (2013) New World Bats Harbor diverse influenza a viruses. PLoS Pathog 9(10):e1003657PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Purcell AW, McCluskey J, Rossjohn J (2007) More than one reason to rethink the use of peptides in vaccine design. Nat Rev Drug Discov 6(5):404–414PubMedCrossRefGoogle Scholar
  3. 3.
    Slingluff CL (2011) The present and future of peptide vaccines for Cancer. Cancer J 17(5):343–350PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Vita R, Overton JA, Greenbaum JA et al (2008) The immune epitope database (IEDB) 3.0. Nucleic Acids Res 43(D1):D405–D412CrossRefGoogle Scholar
  5. 5.
    Backert L, Kohlbacher O (2015) Immunoinformatics and epitope prediction in the age of genomic medicine. Genome Med 7(1):119PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Bao Y, Bolotov P, Dernovoy D et al (2008) The influenza virus resource at the national center for biotechnology information. J Virol 82(2):596–601PubMedCrossRefGoogle Scholar
  7. 7.
    Zhang Y, Aevermann BD, Anderson TK et al (2017) Influenza research database: an integrated bioinformatics resource for influenza virus research. Nucleic Acids Res 45(D1):D466–D474PubMedCrossRefGoogle Scholar
  8. 8.
    Miotto O, Heiny AT, Tan TW et al (2007) Identification of human-to-human transmissibility factors in PB2 proteins of influenza a by large-scale mutual information analysis. BMC Bioinformatics 9(1):1–18Google Scholar
  9. 9.
    Lohia N, Baranwal M (2014) Conserved peptides containing overlapping CD4+ and CD8+ T-cell epitopes in the H1N1 influenza virus: an immunoinformatics approach. Viral Immunol 27(5):225–234PubMedCrossRefGoogle Scholar
  10. 10.
    Agallou M, Athanasiou E, Koutsoni O et al (2014) Experimental validation of multi-epitope peptides including promising MHC class I- and II-restricted epitopes of four known Leishmania infantum proteins. Front Immunol 5:1–16CrossRefGoogle Scholar
  11. 11.
    Vijayan R, Subbarao N, Manoharan N (2015) In silico analysis of conformational changes induced by normal and mutation of macrophage infectivity potentiator catalytic residues and its interactions with Rapamycin. Interdiscip Sci 7(3):326–333PubMedCrossRefGoogle Scholar
  12. 12.
    Patronov A, Dimitrov I, Flower DR et al (2011) Peptide binding prediction for the human class II MHC allele HLA-DP2: a molecular docking approach. BMC Struct Biol 11:32PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Thévenet P, Shen Y, Maupetit J et al (2012) PEP-FOLD: an updated de novo structure prediction server for both linear and disulfide bonded cyclic peptides. Nucleic Acids Res 40(W1):288–293CrossRefGoogle Scholar
  14. 14.
    Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function efficient optimization and multithreading. J Comput Chem 31(2):455PubMedPubMedCentralGoogle Scholar
  15. 15.
    Lohia N, Baranwal M (2018) Highly conserved hemagglutinin peptides of H1N1 influenza virus elicit immune response. 3 Biotech 8(12):492PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Jain S, Baranwal M (2019) Computational analysis in designing T cell epitopes enriched peptides of Ebola glycoprotein exhibiting strong binding interaction with HLA molecules. J Theor Biol 465:34–44PubMedCrossRefGoogle Scholar
  17. 17.
    Bui HH, Sidney J, Dinh K et al (2006) Predicting population coverage of T-cell epitope-based diagnostics and vaccines. BMC Bioinformatics 7:1–5CrossRefGoogle Scholar
  18. 18.
    González-Galarza FF, Takeshita LYC, Santos EJM et al (2015) Allele frequency net 2015 update: new features for HLA epitopes, KIR and disease and HLA adverse drug reaction associations. Nucleic Acids Res 43(D1):D784–D788PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Lohia N, Baranwal M (2015) Identification of conserved peptides comprising multiple T cell epitopes of matrix 1 protein in H1N1 influenza virus. Viral Immunol 28(10):570–579PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Doytchinova IA, Guan P, Flower DR (2006) EpiJen: a server for multistep T cell epitope prediction. BMC Bioinformatics 7:1–11CrossRefGoogle Scholar
  21. 21.
    Jacob L, Vert JP (2008) Efficient peptide-MHC-I binding prediction for alleles with few known binders. Bioinformatics24(3):358–366Google Scholar
  22. 22.
  23. 23.
    Guan P, Doytchinova IA, Zygouri C (2003) MHCPred: a server for quantitative prediction of peptide-MHC binding. Nucleic Acids Res 31(13):3621–3624PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Bhasin M, Raghava GPS (2003) Prediction of promiscuous and high-affinity mutated MHC binders. Hybrid Hybridomics 22(4):229–234CrossRefGoogle Scholar
  25. 25.
    Larsen MV, Lundegaard C, Lamberth K et al (2007) Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinformatics 8:1–12CrossRefGoogle Scholar
  26. 26.
    Stranzl T, Larsen MV, Lundegaard C et al (2010) NetCTLpan: pan-specific MHC class I pathway epitope predictions. Immunogenetics 62(6):357–368PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Jurtz V, Paul S, Andreatta M et al (2017) NetMHCpan-4.0: improved peptide–MHC class i interaction predictions integrating eluted ligand and peptide binding affinity data. J Immunol 199(9):3360–3368PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Andreatta M, Nielsen M (2015) Gapped sequence alignment using artificial neural networks: application to the MHC class i system. Bioinformatics 32(4):511–517PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Bhasin M, Raghava GPS (2007) A hybrid approach for predicting promiscuous MHC class I restricted T cell epitopes. J Biosci 32(1):31–42PubMedCrossRefGoogle Scholar
  30. 30.
    Singh H, Raghava GPS (2002) ProPred: prediction of HLA-DR binding sites. Bioinformatics 17(12):1236–1237CrossRefGoogle Scholar
  31. 31.
    Singh H, Raghava GPS (2003) ProPred1: prediction of promiscuous MHC class-I binding sites. Bioinformatics 19(8):1009–1014PubMedCrossRefGoogle Scholar
  32. 32.
    Reche PA, Reinherz EL (2007) Prediction of peptide-MHC binding using profiles. Methods Mol Bio 409:185–200CrossRefGoogle Scholar
  33. 33.
    Liu W, Wan J, Meng X et al (2007) In silico prediction of peptide-MHC binding affinity using SVRMHC. Methods Mol Biol (Clifton, NJ) 409:283–291CrossRefGoogle Scholar
  34. 34.
    Rammensee HG, Bachmann J, Emmerich NPN et al (1999) SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50(3–4):213–219CrossRefGoogle Scholar
  35. 35.
    Jespersen MC, Peters B, Nielsen M et al (2017) BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Res 45(W1):W24–W29PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Ansari H, Raghava GP (2010) Identification of conformational B-cell epitopes in an antigen from its primary sequence. Immunome Res 6(1):6PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Saha S, Raghava GP (2006) Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins 65(1):40–48CrossRefGoogle Scholar
  38. 38.
    Gupta S, Ansari HR, Gautam A et al (2013) Identification of B-cell epitopes in an antigen for inducing specific class of antibodies. Biol Direct 8(1):27PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Chen J, Liu H, Yang J et al (2007) Prediction of linear B-cell epitopes using amino acid pair antigenicity scale. Amino Acids 33(3):423–428CrossRefGoogle Scholar
  40. 40.
    Yao B, Zhang L, Liang S et al (2012) SVMTriP: a method to predict antigenic epitopes using support vector machine to integrate tri-peptide similarity and propensity. PLoS One 7(9):e45152PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Saha S, Raghava GPS (2004) BcePred: prediction of continuous B-cell epitopes in antigenic sequences using Physico-chemical properties. In: Nicosia G, Cutello V, Bentley PJ, Timmis J (eds) Artificial immune systems. ICARIS 2004. Lecture notes in computer science, vol 3239. Springer, Berlin, HeidelbergGoogle Scholar
  42. 42.
    Gao J, Faraggi E, Zhou Y et al (2012) BEST: improved prediction of B-cell epitopes from antigen sequences. PLoS One 7(6):e40104PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Rubinstein ND, Mayrose I, Martz E et al (2009) Epitopia: a web-server for predicting B-cell epitopes. BMC Bioinformatics 10(1):287PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Mayrose I, Penn O, Erez E et al (2007) Pepitope: epitope mapping from affinity-selected peptides. Bioinformatics 23(23):3244–3246PubMedCrossRefGoogle Scholar
  45. 45.
    Manavalan B, Govindaraj RG, Shin TH et al (2018) iBCE-EL: a new ensemble learning framework for improved linear B-cell epitope prediction. Front Immunol 9:1695PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Sweredoski MJ, Baldi P (2009) COBEpro: a novel system for predicting continuous B-cell epitopes. Protein Eng Des Sel 22(3):113–120PubMedCrossRefGoogle Scholar
  47. 47.
    Singh H, Ansari HR, Raghava GP (2013) Improved method for linear b-cell epitope prediction using antigen’s primary sequence. PLoS One 8(5):e62216PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Neha Lohia
    • 1
    • 2
  • Manoj Baranwal
    • 1
  1. 1.Department of BiotechnologyThapar Institute of Engineering and TechnologyPatialaIndia
  2. 2.School of Life SciencesJaipur National UniversityJaipurIndia

Personalised recommendations