Advertisement

Mouse Models of Virus-Induced Type 1 Diabetes

  • Gustaf Christoffersson
  • Malin Flodström-TullbergEmail author
Protocol
  • 76 Downloads
Part of the Methods in Molecular Biology book series (MIMB, volume 2128)

Abstract

Virus infections have been linked to the induction of autoimmunity and disease development in human type 1 diabetes. Experimental models have been instrumental in deciphering processes leading to break of immunological tolerance and type 1 diabetes development. Animal models have also been useful for proof-of-concept studies and for preclinical testing of new therapeutic interventions. This chapter describes two robust and clinically relevant mouse models for virus-induced type 1 diabetes; acceleration of disease onset in prediabetic nonobese diabetic (NOD) mice following Coxsackievirus infection and diabetes induction by lymphocytic choriomeningitis virus (LCMV) infection of transgenic mice expressing viral neo-antigens under control of the rat insulin promoter (RIP).

Key words

Coxsackievirus Enterovirus Diabetes Immunization Infection Lymphocytic choriomeningitis virus Peptides T lymphocytes Type 1 diabetes Virus-induced type 1 diabetes 

References

  1. 1.
    DiMeglio L, Evans-Molina C, Oram R (2018) Type 1 diabetes. Lancet 16(391):2449–2462CrossRefGoogle Scholar
  2. 2.
    Hyoty H (2016) Viruses in type 1 diabetes. Pediatr Diabetes 17(Suppl 22):56–64.  https://doi.org/10.1111/pedi.12370CrossRefPubMedGoogle Scholar
  3. 3.
    Rewers M, Ludvigsson J (2016) Environmental risk factors for type 1 diabetes. Lancet 387(10035):2340–2348.  https://doi.org/10.1016/S0140-6736(16)30507-4CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Yeung WC, Rawlinson WD, Craig ME (2011) Enterovirus infection and type 1 diabetes mellitus: systematic review and meta-analysis of observational molecular studies. BMJ 342:d35.  https://doi.org/10.1136/bmj.d35CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Lenzen S (2017) Animal models of human type 1 diabetes for evaluating combination therapies and successful translation to the patient with type 1 diabetes. Diabetes Metab Res Rev 33(7).  https://doi.org/10.1002/dmrr.2915
  6. 6.
    Mullen Y (2017) Development of the nonobese diabetic mouse and contribution of animal models for understanding type 1 diabetes. Pancreas 46(4):455–466.  https://doi.org/10.1097/MPA.0000000000000828CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    You S, Chatenoud L (2016) Autoimmune diabetes: an overview of experimental models and novel therapeutics. Methods Mol Biol 1371:117–142.  https://doi.org/10.1007/978-1-4939-3139-2_8CrossRefPubMedGoogle Scholar
  8. 8.
    Flodstrom M, Maday A, Balakrishna D, Cleary MM, Yoshimura A, Sarvetnick N (2002) Target cell defense prevents the development of diabetes after viral infection. Nat Immunol 3(4):373–382CrossRefGoogle Scholar
  9. 9.
    Horwitz MS, Bradley LM, Harbertson J, Krahl T, Lee J, Sarvetnick N (1998) Diabetes induced by Coxsackie virus: initiation by bystander damage and not molecular mimicry. Nat Med 4(7):781–785CrossRefGoogle Scholar
  10. 10.
    Larsson PG, Lakshmikanth T, Svedin E, King C, Flodstrom-Tullberg M (2013) Previous maternal infection protects offspring from enterovirus infection and prevents experimental diabetes development in mice. Diabetologia 56(4):867–874.  https://doi.org/10.1007/s00125-013-2834-zCrossRefPubMedGoogle Scholar
  11. 11.
    Ohashi PS, Oehen S, Buerki K, Pircher H, Ohashi CT, Odermatt B, Malissen B, Zinkernagel RM, Hengartner H (1991) Ablation of “tolerance” and induction of diabetes by virus infection in viral antigen transgenic mice. Cell 65(2):305–317CrossRefGoogle Scholar
  12. 12.
    Oldstone MB, Nerenberg M, Southern P, Price J, Lewicki H (1991) Virus infection triggers insulin-dependent diabetes mellitus in a transgenic model: role of anti-self (virus) immune response. Cell 65(2):319–331CrossRefGoogle Scholar
  13. 13.
    Serreze DV, Ottendorfer EW, Ellis TM, Gauntt CJ, Atkinson MA (2000) Acceleration of type 1 diabetes by a coxsackievirus infection requires a preexisting critical mass of autoreactive T-cells in pancreatic islets. Diabetes 49(5):708–711CrossRefGoogle Scholar
  14. 14.
    Hara N, Alkanani AK, Ir D, Robertson CE, Wagner BD, Frank DN, Zipris D (2012) Prevention of virus-induced type 1 diabetes with antibiotic therapy. J Immunol 189(8):3805–3814.  https://doi.org/10.4049/jimmunol.1201257CrossRefGoogle Scholar
  15. 15.
    Homann D, Jahreis A, Wolfe T, Hughes A, Coon B, van Stipdonk MJ, Prilliman KR, Schoenberger SP, von Herrath MG (2002) CD40L blockade prevents autoimmune diabetes by induction of bitypic NK/DC regulatory cells. Immunity 16(3):403–415CrossRefGoogle Scholar
  16. 16.
    Larsson PG, Lakshmikanth T, Laitinen OH, Utorova R, Jacobson S, Oikarinen M, Domsgen E, Koivunen MR, Chaux P, Devard N, Lecouturier V, Almond J, Knip M, Hyoty H, Flodstrom-Tullberg M (2015) A preclinical study on the efficacy and safety of a new vaccine against Coxsackievirus B1 reveals no risk for accelerated diabetes development in mouse models. Diabetologia 58(2):346–354.  https://doi.org/10.1007/s00125-014-3436-0CrossRefPubMedGoogle Scholar
  17. 17.
    Stone VM, Hankaniemi MM, Svedin E, Sioofy-Khojine A, Oikarinen S, Hyoty H, Laitinen OH, Hytonen VP, Flodstrom-Tullberg M (2018) A Coxsackievirus B vaccine protects against virus-induced diabetes in an experimental mouse model of type 1 diabetes. Diabetologia 61(2):476–481.  https://doi.org/10.1007/s00125-017-4492-zCrossRefPubMedGoogle Scholar
  18. 18.
    Weets I, Van Autreve J, Van der Auwera BJ, Schuit FC, Du Caju MV, Decochez K, De Leeuw IH, Keymeulen B, Mathieu C, Rottiers R, Dorchy H, Quartier E, Gorus FK, Belgian Diabetes R (2001) Male-to-female excess in diabetes diagnosed in early adulthood is not specific for the immune-mediated form nor is it HLA-DQ restricted: possible relation to increased body mass index. Diabetologia 44(1):40–47CrossRefGoogle Scholar
  19. 19.
    Kanno T, Kim K, Kono K, Drescher KM, Chapman NM, Tracy S (2006) Group B coxsackievirus diabetogenic phenotype correlates with replication efficiency. J Virol 80(11):5637–5643CrossRefGoogle Scholar
  20. 20.
    Horwitz MS, Ilic A, Fine C, Balasa B, Sarvetnick N (2004) Coxsackieviral-mediated diabetes: induction requires antigen-presenting cells and is accompanied by phagocytosis of beta cells. Clin Immunol 110(2):134–144CrossRefGoogle Scholar
  21. 21.
    Stene LC, Oikarinen S, Hyoty H, Barriga KJ, Norris JM, Klingensmith G, Hutton JC, Erlich HA, Eisenbarth GS, Rewers M (2010) Enterovirus infection and progression from islet autoimmunity to type 1 diabetes: the Diabetes and Autoimmunity Study in the Young (DAISY). Diabetes 59(12):3174–3180CrossRefGoogle Scholar
  22. 22.
    Kurts C, Heath WR, Carbone FR, Allison J, Miller JF, Kosaka H (1996) Constitutive class I-restricted exogenous presentation of self antigens in vivo. J Exp Med 184(3):923–930CrossRefGoogle Scholar
  23. 23.
    Blanas E, Carbone FR, Allison J, Miller JF, Heath WR (1996) Induction of autoimmune diabetes by oral administration of autoantigen. Science 274(5293):1707–1709CrossRefGoogle Scholar
  24. 24.
    Byersdorfer CA, Schweitzer GG, Unanue ER (2005) Diabetes is predicted by the beta cell level of autoantigen. J Immunol 175(7):4347–4354CrossRefGoogle Scholar
  25. 25.
    Martinic MM, Huber C, Coppieters K, Oldham JE, Gavin AL, von Herrath MG (2010) Expression level of a pancreatic neo-antigen in beta cells determines degree of diabetes pathogenesis. J Autoimmun 35(4):404–413.  https://doi.org/10.1016/j.jaut.2010.08.006CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    von Herrath MG, Dockter J, Oldstone MB (1994) How virus induces a rapid or slow onset insulin-dependent diabetes mellitus in a transgenic model. Immunity 1(3):231–242CrossRefGoogle Scholar
  27. 27.
    Pircher H, Burki K, Lang R, Hengartner H, Zinkernagel RM (1989) Tolerance induction in double specific T-cell receptor transgenic mice varies with antigen. Nature 342(6249):559–561.  https://doi.org/10.1038/342559a0CrossRefPubMedGoogle Scholar
  28. 28.
    Christoffersson G, Chodaczek G, Ratliff SS, Coppieters K, von Herrath MG (2018) Suppression of diabetes by accumulation of non–islet-specific CD8+ effector T cells in pancreatic islets. Sci Immunol 3(21):eaam6533CrossRefGoogle Scholar
  29. 29.
    Christoffersson G, von Herrath MG (2016) A deeper look into type 1 diabetes - imaging immune responses during onset of disease. Front Immunol 7:313.  https://doi.org/10.3389/fimmu.2016.00313CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Burrill CP, Strings VR, Andino R (2013) Poliovirus: generation, quantification, propagation, purification, and storage. Curr Protoc Microbiol Chapter 15:Unit 15H 11.  https://doi.org/10.1002/9780471729259.mc15h01s29
  31. 31.
    Hankaniemi MM, Laitinen OH, Stone VM, Sioofy-Khojine A, Maatta JAE, Larsson PG, Marjomaki V, Hyoty H, Flodstrom-Tullberg M, Hytonen VP (2017) Optimized production and purification of Coxsackievirus B1 vaccine and its preclinical evaluation in a mouse model. Vaccine 35(30):3718–3725.  https://doi.org/10.1016/j.vaccine.2017.05.057CrossRefPubMedGoogle Scholar
  32. 32.
    Flodstrom M, Horwitz MS, Maday A, Balakrishna D, Rodriguez E, Sarvetnick N (2001) A critical role for inducible nitric oxide synthase in host survival following coxsackievirus B4 infection. Virology 281(2):205–215CrossRefGoogle Scholar
  33. 33.
    Tracy S, Drescher KM (2007) Coxsackievirus infections and NOD mice: relevant models of protection from, and induction of, type 1 diabetes. Ann N Y Acad Sci 1103:143–151CrossRefGoogle Scholar
  34. 34.
    Oxenius A, Bachmann MF, Zinkernagel RM, Hengartner H (1998) Virus-specific MHC-class II-restricted TCR-transgenic mice: effects on humoral and cellular immune responses after viral infection. Eur J Immunol 28(1):390–400CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Gustaf Christoffersson
    • 1
  • Malin Flodström-Tullberg
    • 2
    Email author
  1. 1.Department of Medical Cell BiologyUppsala UniversityUppsalaSweden
  2. 2.The Center for Infectious Medicine (CIM), Department of Medicine HuddingeKarolinska Institutet and Karolinska University Hospital HuddingeStockholmSweden

Personalised recommendations