Advertisement

Assessment of Insulin Tolerance In Vivo in Mice

  • Irene Cózar-Castellano
  • Germán PerdomoEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2128)

Abstract

Insulin resistance in humans and mice is an important hallmark of metabolic diseases. Therefore, assessment of insulin sensitivity/resistance in animal models provides valuable information in the pathophysiology of diabetes and obesity. Depending on the nature of the information required, we can choose between direct and indirect techniques available for the determination of insulin sensitivity. Thus, the complex hyperinsulinemic-euglycemic glucose clamps and the insulin suppression test assess insulin-mediated glucose utilization under steady-state conditions, whereas less complex methods, such as the insulin tolerance test (ITT), rely on measurements of blood glucose levels in animals subjected to intraperitoneal insulin loading. Finally, surrogated indexes derived from blood glucose and plasma insulin levels are also available for assessment of insulin sensitivity/resistance in vivo. In this chapter, we focus on the intraperitoneal insulin tolerance test (IPITT) protocol for measuring insulin resistance in mice.

Key words

Insulin sensitivity Insulin resistance Glucose homeostasis Metabolism High-fat diet 

Notes

Acknowledgments

This work was supported by grants from the Ministerio de Economía, Industria y Competitividad: SAF2014-58702-C2-1-R and SAF2016-77871-C2-1-R to IC; SAF2014-58702-C2-2-R and SAF2016-77871-C2-2-R to GP. Supported by the EFSD European Research Programme on New Targets for Type 2 Diabetes supported by an educational research grant from MSD to ICC and GP.

References

  1. 1.
    ACCORD Study Group, Gerstein HC, Miller ME, Genuth S, Ismail-Beigi F, Buse JB, Goff DC Jr, Probstfield JL, Cushman WC, Ginsberg HN, Bigger JT, Grimm RH Jr, Byington RP, Rosenberg YD, Friedewald WT (2011) Long-term effects of intensive glucose lowering on cardiovascular outcomes. N Engl J Med 364(9):818–828CrossRefGoogle Scholar
  2. 2.
    Collaboration NCDRF (2016) Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet 387(10027):1513–1530CrossRefGoogle Scholar
  3. 3.
    Ogurtsova K, da Rocha Fernandes JD, Huang Y, Linnenkamp U, Guariguata L, Cho NH, Cavan D, Shaw JE, Makaroff LE (2017) IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract 128:40–50CrossRefGoogle Scholar
  4. 4.
    Samuel VT, Shulman GI (2012) Mechanisms for insulin resistance: common threads and missing links. Cell 148(5):852–871CrossRefGoogle Scholar
  5. 5.
    Defronzo RA (2009) Banting Lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes 58(4):773–795CrossRefGoogle Scholar
  6. 6.
    Kim JK (2009) Hyperinsulinemic-euglycemic clamp to assess insulin sensitivity in vivo. Methods Mol Biol 560:221–238CrossRefGoogle Scholar
  7. 7.
    Muniyappa R, Lee S, Chen H, Quon MJ (2008) Current approaches for assessing insulin sensitivity and resistance in vivo: advantages, limitations, and appropriate usage. Am J Physiol Endocrinol Metab 294(1):E15–E26CrossRefGoogle Scholar
  8. 8.
    McGuinness OP, Ayala JE, Laughlin MR, Wasserman DH (2009) NIH experiment in centralized mouse phenotyping: the Vanderbilt experience and recommendations for evaluating glucose homeostasis in the mouse. Am J Physiol Endocrinol Metab 297(4):E849–E855CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Instituto de Biología y Genética Molecular (Universidad de Valladolid-CSIC)ValladolidSpain
  2. 2.Departmento de Ciencias de la Salud, Facultad de Ciencias de la SaludUniversidad de BurgosBurgosSpain

Personalised recommendations