Advertisement

Practical Considerations when Using Mouse Models of Diabetes

  • Aileen J. F. KingEmail author
  • Lydia F. Daniels Gatward
  • Matilda R. Kennard
Protocol
  • 62 Downloads
Part of the Methods in Molecular Biology book series (MIMB, volume 2128)

Abstract

Mouse models of diabetes are important tools used in preclinical diabetes research. However, when working with these models, it is important to consider factors that could influence experimental outcome. This is particularly important given the wide variety of models available, each with specific characteristics that could be influenced by extrinsic or intrinsic factors. Blood glucose concentrations, a commonly used and valid endpoint in these models, are particularly susceptible to manipulation by these factors. These include potential effects of intrinsic factors such as strain, sex, and age and extrinsic factors such as husbandry practices and experimental protocols. These variables should therefore be taken into consideration when the model is chosen and the experiments are designed. This chapter outlines common variables that can impact the phenotype of a model, as well as describes the methods used for assessing onset of diabetes and monitoring diabetic mice.

Key words

Mouse models of diabetes Blood glucose Husbandry 

References

  1. 1.
    King A, Bowe J (2016) Animal models for diabetes: understanding the pathogenesis and finding new treatments. Biochem Pharmacol 99:1–10.  https://doi.org/10.1016/j.bcp.2015.08.108CrossRefPubMedGoogle Scholar
  2. 2.
    King AJF (2012) The use of animal models in diabetes research. Br J Pharmacol 166(3):877–894.  https://doi.org/10.1111/j.1476-5381.2012.01911.xCrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Bowe JE, Franklin ZJ, Hauge-Evans AC, King AJ, Persaud SJ, Jones PM (2014) Metabolic phenotyping guidelines: assessing glucose homeostasis in rodent models. J Endocrinol 222(3):G13–G25.  https://doi.org/10.1530/joe-14-0182CrossRefPubMedGoogle Scholar
  4. 4.
    Leiter EH (2009) Selecting the “right” mouse model for metabolic syndrome and type 2 diabetes research. Methods Mol Biol 560:1–17.  https://doi.org/10.1007/978-1-59745-448-3_1CrossRefPubMedGoogle Scholar
  5. 5.
    Morton DB (2000) A systematic approach for establishing humane endpoints. ILAR J 41(2):80–86.  https://doi.org/10.1093/ilar.41.2.80CrossRefPubMedGoogle Scholar
  6. 6.
    Leiter EH, Schile A (2013) Genetic and pharmacologic models for type 1 diabetes. Curr Protoc Mouse Biol 3(1):9–19.  https://doi.org/10.1002/9780470942390.mo120154CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Yoshioka M, Kayo T, Ikeda T, Koizumi A (1997) A novel locus, Mody4, distal to D7Mit189 on chromosome 7 determines early-onset NIDDM in nonobese C57BL/6 (Akita) mutant mice. Diabetes 46(5):887–894.  https://doi.org/10.2337/diab.46.5.887CrossRefPubMedGoogle Scholar
  8. 8.
    Herbach N, Rathkolb B, Kemter E, Pichl L, Klaften M, de Angelis MH, Halban PA, Wolf E, Aigner B, Wanke R (2007) Dominant-negative effects of a novel mutated Ins2 allele causes early-onset diabetes and severe beta-cell loss in Munich Ins2C95S mutant mice. Diabetes 56(5):1268–1276.  https://doi.org/10.2337/db06-0658CrossRefPubMedGoogle Scholar
  9. 9.
    Le May C, Chu K, Hu M, Ortega CS, Simpson ER, Korach KS, Tsai MJ, Mauvais-Jarvis F (2006) Estrogens protect pancreatic beta-cells from apoptosis and prevent insulin-deficient diabetes mellitus in mice. Proc Natl Acad Sci U S A 103(24):9232–9237.  https://doi.org/10.1073/pnas.0602956103CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Pozzilli P, Signore A, Williams AJ, Beales PE (1993) NOD mouse colonies around the world--recent facts and figures. Immunol Today 14(5):193–196.  https://doi.org/10.1016/0167-5699(93)90160-mCrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Tiano JP, Mauvais-Jarvis F (2012) Importance of oestrogen receptors to preserve functional beta-cell mass in diabetes. Nat Rev Endocrinol 8(6):342–351.  https://doi.org/10.1038/nrendo.2011.242CrossRefPubMedGoogle Scholar
  12. 12.
    Xu B, Allard C, Alvarez-Mercado AI, Fuselier T, Kim JH, Coons LA, Hewitt SC, Urano F, Korach KS, Levin ER, Arvan P, Floyd ZE, Mauvais-Jarvis F (2018) Estrogens promote misfolded proinsulin degradation to protect insulin production and delay diabetes. Cell Rep 24(1):181–196.  https://doi.org/10.1016/j.celrep.2018.06.019CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Gale EA, Gillespie KM (2001) Diabetes and gender. Diabetologia 44(1):3–15.  https://doi.org/10.1007/s001250051573CrossRefPubMedGoogle Scholar
  14. 14.
    Mauvais-Jarvis F (2015) Sex differences in metabolic homeostasis, diabetes, and obesity. Biol Sex Differ 6:14.  https://doi.org/10.1186/s13293-015-0033-yCrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Hull RL, Willard JR, Struck MD, Barrow BM, Brar GS, Andrikopoulos S, Zraika S (2017) High fat feeding unmasks variable insulin responses in male C57BL/6 mouse substrains. J Endocrinol 233(1):53–64.  https://doi.org/10.1530/joe-16-0377CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Andrikopoulos S, Massa CM, Aston-Mourney K, Funkat A, Fam BC, Hull RL, Kahn SE, Proietto J (2005) Differential effect of inbred mouse strain (C57BL/6, DBA/2, 129T2) on insulin secretory function in response to a high fat diet. J Endocrinol 187(1):45–53.  https://doi.org/10.1677/joe.1.06333CrossRefPubMedGoogle Scholar
  17. 17.
    Montgomery MK, Hallahan NL, Brown SH, Liu M, Mitchell TW, Cooney GJ, Turner N (2013) Mouse strain-dependent variation in obesity and glucose homeostasis in response to high-fat feeding. Diabetologia 56(5):1129–1139.  https://doi.org/10.1007/s00125-013-2846-8CrossRefPubMedGoogle Scholar
  18. 18.
    Bugger H, Abel ED (2009) Rodent models of diabetic cardiomyopathy. Dis Model Mech 2(9–10):454–466.  https://doi.org/10.1242/dmm.001941CrossRefPubMedGoogle Scholar
  19. 19.
    Azushima K, Gurley SB, Coffman TM (2018) Modelling diabetic nephropathy in mice. Nat Rev Nephrol 14(1):48–56.  https://doi.org/10.1038/nrneph.2017.142CrossRefPubMedGoogle Scholar
  20. 20.
    Mi X-S, Yuan T-F, Ding Y, Zhong J-X, So K-F (2014) Choosing preclinical study models of diabetic retinopathy: key problems for consideration. Drug Des Devel Ther 8:2311–2319.  https://doi.org/10.2147/DDDT.S72797CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    O’Brien PD, Sakowski SA, Feldman EL (2014) Mouse models of diabetic neuropathy. ILAR J 54(3):259–272.  https://doi.org/10.1093/ilar/ilt052CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Lindstrom P (2007) The physiology of obese-hyperglycemic mice [ob/ob mice]. ScientificWorldJournal 7:666–685.  https://doi.org/10.1100/tsw.2007.117CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Andersson DA, Filipovic MR, Gentry C, Eberhardt M, Vastani N, Leffler A, Reeh P, Bevan S (2015) Streptozotocin stimulates the ion channel TRPA1 directly: involvement of peroxynitrite. J Biol Chem 290(24):15185–15196.  https://doi.org/10.1074/jbc.M115.644476CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Evan AP, Mong SA, Connors BA, Aronoff GR, Luft FC (1984) The effect of alloxan, and alloxan-induced diabetes on the kidney. Anat Rec 208(1):33–47.  https://doi.org/10.1002/ar.1092080105CrossRefPubMedGoogle Scholar
  25. 25.
    Wicksteed B, Brissova M, Yan W, Opland DM, Plank JL, Reinert RB, Dickson LM, Tamarina NA, Philipson LH, Shostak A, Bernal-Mizrachi E, Elghazi L, Roe MW, Labosky PA, Myers MG Jr, Gannon M, Powers AC, Dempsey PJ (2010) Conditional gene targeting in mouse pancreatic ss-cells: analysis of ectopic Cre transgene expression in the brain. Diabetes 59(12):3090–3098.  https://doi.org/10.2337/db10-0624CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    De Francesco PN, Cornejo MP, Barrile F, Garcia Romero G, Valdivia S, Andreoli MF, Perello M (2019) Inter-individual Variability for high fat diet consumption in inbred C57BL/6 Mice. Front Nutr 6:67.  https://doi.org/10.3389/fnut.2019.00067CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Andrikopoulos S, Blair AR, Deluca N, Fam BC, Proietto J (2008) Evaluating the glucose tolerance test in mice. Am J Physiol Endocrinol Metab 295(6):E1323–E1332.  https://doi.org/10.1152/ajpendo.90617.2008CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    McGuinness OP, Ayala JE, Laughlin MR, Wasserman DH (2009) NIH experiment in centralized mouse phenotyping: the Vanderbilt experience and recommendations for evaluating glucose homeostasis in the mouse. Am J Physiol Endocrinol Metab 297(4):E849–E855.  https://doi.org/10.1152/ajpendo.90996.2008CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Ayala JE, Samuel VT, Morton GJ, Obici S, Croniger CM, Shulman GI, Wasserman DH, McGuinness OP (2010) Standard operating procedures for describing and performing metabolic tests of glucose homeostasis in mice. Dis Model Mech 3(9–10):525–534.  https://doi.org/10.1242/dmm.006239CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Kappel S, Hawkins P, Mendl MT (2017) To group or not to group? Good practice for housing male laboratory mice. Animals 7(12).  https://doi.org/10.3390/ani7120088
  31. 31.
    Rasmussen S, Miller MM, Filipski SB, Tolwani RJ (2011) Cage change influences serum corticosterone and anxiety-like behaviors in the mouse. J Am Assoc Lab Animal Sci 50(4):479–483Google Scholar
  32. 32.
    Ghosal S, Nunley A, Mahbod P, Lewis AG, Smith EP, Tong J, D’Alessio DA, Herman JP (2015) Mouse handling limits the impact of stress on metabolic endpoints. Physiol Behav 150:31–37.  https://doi.org/10.1016/j.physbeh.2015.06.021CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Hurst JL, West RS (2010) Taming anxiety in laboratory mice. Nat Methods 7(10):825–826.  https://doi.org/10.1038/nmeth.1500CrossRefPubMedGoogle Scholar
  34. 34.
    Goyal SN, Reddy NM, Patil KR, Nakhate KT, Ojha S, Patil CR, Agrawal YO (2016) Challenges and issues with streptozotocin-induced diabetes - a clinically relevant animal model to understand the diabetes pathogenesis and evaluate therapeutics. Chem Biol Interact 244:49–63.  https://doi.org/10.1016/j.cbi.2015.11.032CrossRefPubMedGoogle Scholar
  35. 35.
    Lenzen S (2008) The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia 51(2):216–226.  https://doi.org/10.1007/s00125-007-0886-7CrossRefPubMedGoogle Scholar
  36. 36.
    King AJ, Austin AL, Nandi M, Bowe JE (2017) Diabetes in rats is cured by islet transplantation...But only during daytime. Cell Transplant 26(1):171–172.  https://doi.org/10.3727/096368916X692258CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Kilkenny C, Browne W, Cuthill IC, Emerson M, Altman DG (2010) Animal research: reporting in vivo experiments: the ARRIVE guidelines. Br J Pharmacol 160(7):1577–1579.  https://doi.org/10.1111/j.1476-5381.2010.00872.xCrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Weitgasser RDAWG (1999) Measurement of glucose concentrations in rats: differences between glucose meter and plasma laboratory results. Diabetologia 42(2):256–256.  https://doi.org/10.1007/s001250051147CrossRefPubMedGoogle Scholar
  39. 39.
    Peterson RG, Brockway R (2012) Assessment of Nova Biomedical StatStrip® glucose meters and test strips in rodent glucose studies. FASEB J 26(1_supplement):1127.1111.  https://doi.org/10.1096/fasebj.26.1_supplement.1127.11CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Aileen J. F. King
    • 1
    Email author
  • Lydia F. Daniels Gatward
    • 1
  • Matilda R. Kennard
    • 1
  1. 1.Department of Diabetes, School of Life Course SciencesKing’s College LondonLondonUK

Personalised recommendations