Mass Spectrometry for Biomarkers Discovery in Esophageal Squamous Cell Carcinoma

  • Farhadul Islam
  • Vinod Gopalan
  • Alfred K. LamEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 2129)


Mass spectrometry-based proteomics analysis could categorize proteins and study their interactions in large scale in human cancers. By this method, many proteins are upregulated or downregulated in esophageal squamous cell carcinoma (ESCC) when compared to nonneoplastic esophageal mucosae. The method can also be used to identify novel, effective biomarkers for early diagnosis or predict prognosis of patients with ESCC. These changes are associated with different clinical and pathological parameters. Different biological matrices such as pathological tissue, body fluids, and cancer cell lines-based proteomics have widely been used. Herein, we described cell line-based label-free shotgun proteomics (in-solution tryptic digestion) to identify the protein biomarkers differently expressed in ESCC.

Key words

Label-free proteomics Shotgun proteomics ESCC Cancer Biomarkers 


  1. 1.
    Anderson NL, Anderson NG (1998) Proteome and proteomics: new technologies, new concepts, and new words. Electrophoresis 19:1853–1861CrossRefGoogle Scholar
  2. 2.
    Tyers M, Mann M (2003) From genomics to proteomics. Nature 422:193–197CrossRefGoogle Scholar
  3. 3.
    Gronborg M, Kristiansen TZ, Iwahori A, Chang R, Reddy R, Sato N et al (2006) Biomarker discovery from pancreatic cancer secretome using a differential proteomic approach. Mol Cell Proteomics 5:157–171CrossRefGoogle Scholar
  4. 4.
    Wu HY, Chang YH, Chang YC, Liao PC (2009) Proteomics analysis of nasopharyngeal carcinoma cell secretome using a hollow fiber culture system and mass spectrometry. J Proteome Res 8:380–389CrossRefGoogle Scholar
  5. 5.
    Iannetti A, Pacifico F, Acquaviva R, Lavorgna A, Crescenzi E, Vascotto C et al (2008) The neutrophil gelatinase-associated lipocalin (NGAL), a NF-kappa-B-regulated gene, is a survival factor for thyroid neoplastic cells. Proc Natl Acad Sci U S A 105:14058–14063CrossRefGoogle Scholar
  6. 6.
    Zhong L, Roybal J, Chaerkady R, Zhang W, Choi K, Alvarez CA et al (2008) Identification of secreted proteins that mediate cell-cell interactions in an in vitro model of the lung cancer microenvironment. Cancer Res 68:7237–7245CrossRefGoogle Scholar
  7. 7.
    Weng LP, Wu CC, Hsu BL, Chi LM, Liang Y, Tseng CP et al (2008) Secretome-based identification of mac-2 binding protein as a potential oral cancer marker involved in cell growth and motility. J Proteome Res 7:3765–3775CrossRefGoogle Scholar
  8. 8.
    Kobayashi R, Deavers M, Patenia R, Rice-Stitt T, Halbe J, Gallardo S et al (2009) 14-3-3 zeta protein secreted by tumor associated monocytes/macrophages from ascites of epithelial ovarian cancer patients. Cancer Immunol Immunother 58:247–258CrossRefGoogle Scholar
  9. 9.
    Wu CC, Chen HC, Chen SJ, Liu HP, Hsieh YY, Yu CJ et al (2008) Identification of collapsin response mediator protein-2 as a potential marker of colorectal carcinoma by comparative analysis of cancer cell secretomes. Proteomics 8:316–332CrossRefGoogle Scholar
  10. 10.
    Dombkowski AA, Cukovic D, Novak RF (2006) Secretome analysis of microarray data reveals extracellular events associated with proliferative potential in a cell line model of breast disease. Cancer Lett 241:49–58CrossRefGoogle Scholar
  11. 11.
    Paulitschke V, Kunstfeld R, Mohr T, Slany A, Micksche M, Drach J et al (2009) Entering a new era of rational biomarker discovery for early detection of melanoma metastases: secretome analysis of associated stroma cells. J Proteome Res 8:2501–2510CrossRefGoogle Scholar
  12. 12.
    Cravatt BF, Simon GM, Yates JR III (2007) The biological impact of mass-spectrometry-based proteomics. Nature 450:991–1000CrossRefGoogle Scholar
  13. 13.
    Kashyap MK, Harsha HC, Renuse S, Pawar H, Sahasrabuddhe NA, Kim MS et al (2010) SILAC-based quantitative proteomic approach to identify potential biomarkers from the esophageal squamous cell carcinoma secretome. Cancer Biol Ther 10:796–810CrossRefGoogle Scholar
  14. 14.
    Xue H, Lu B, Lai M (2008) The cancer secretome: a reservoir of biomarkers. J Transl Med 6:52CrossRefGoogle Scholar
  15. 15.
    Zhang W, Matrisian LM, Holmbeck K, Vick CC, Rosenthal EL (2006) Fibroblast-derived MT1-MMP promotes tumor progression in vitro and in vivo. BMC Cancer 6:52CrossRefGoogle Scholar
  16. 16.
    Du XL, Hu H, Lin DC, Xia SH, Shen XM, Zhang Y et al (2007) Proteomic profiling of proteins dysregulated in Chinese esophageal squamous cell carcinoma. J Mol Med 85:863–875CrossRefGoogle Scholar
  17. 17.
    Fu L, Qin YR, Xie D, Chow HY, Ngai SM, Kwong DL et al (2007) Identification of alpha-actinin 4 and 67 kDa laminin receptor as stage-specific markers in esophageal cancer via proteomic approaches. Cancer 110:2672–2681CrossRefGoogle Scholar
  18. 18.
    Fujita Y, Nakanishi T, Hiramatsu M, Mabuchi H, Miyamoto Y, Miyamoto A et al (2006) Proteomics-based approach identifying autoantibody against peroxiredoxin VI as a novel serum marker in esophageal squamous cell carcinoma. Clin Cancer Res 12:6415–6420CrossRefGoogle Scholar
  19. 19.
    Fujita Y, Nakanishi T, Miyamoto Y, Hiramatsu M, Mabuchi H, Miyamoto A et al (2008) Proteomics-based identification of autoantibody against heat shock protein 70 as a diagnostic marker in esophageal squamous cell carcinoma. Cancer Lett 263:280–290CrossRefGoogle Scholar
  20. 20.
    Uemura N, Nakanishi Y, Kato H, Saito S, Nagino M, Hirohashi S et al (2009) Transglutaminase 3 as a prognostic biomarker in esophageal cancer revealed by proteomics. Int J Cancer 124:2106–2115CrossRefGoogle Scholar
  21. 21.
    Zhou G, Li H, Gong Y, Zhao Y, Cheng J, Lee P, Zhao Y (2005) Proteomic analysis of global alteration of protein expression in squamous cell carcinoma of the esophagus. Proteomics 5:3814–3821CrossRefGoogle Scholar
  22. 22.
    Breton J, Gage MC, Hay AW, Keen JN, Wild CP, Donnellan C et al (2008) Proteomic screening of a cell line model of esophageal carcinogenesis identifies cathepsin D and aldo-keto reductase 1C2 and 1B10 dysregulation in Barrett’s esophagus and esophageal adenocarcinoma. J Proteome Res 7:1953–1962CrossRefGoogle Scholar
  23. 23.
    Xu SY, Liu Z, Ma WJ, Sheyhidin I, Zheng ST, Lu XM (2009) New potential biomarkers in the diagnosis of esophageal squamous cell carcinoma. Biomarkers 14:340–346CrossRefGoogle Scholar
  24. 24.
    Bauer KM, Lambert PA, Hummon AB (2012) Comparative label-free LC-MS/MS analysis of colorectal adenocarcinoma and metastatic cells treated with 5-fluorouracil. Proteomics 12:1928–1937CrossRefGoogle Scholar
  25. 25.
    Islam F, Chaousis S, Wahab R, Gopalan V, Lam AK (2018) Protein interactions of FAM134B with EB1 and APC/beta-catenin in vitro in colon carcinoma. Mol Carcinog 57:1480–1491CrossRefGoogle Scholar
  26. 26.
    Zhang LY, Ying WT, Mao YS, He HZ, Liu Y, Wang HX et al (2003) Loss of clusterin both in serum and tissue correlates with the tumorigenesis of esophageal squamous cell carcinoma via proteomics approaches. World J Gastroenterol 9:650–654CrossRefGoogle Scholar
  27. 27.
    Qi Y, Chiu JF, Wang L, Kwong DL, He QY (2005) Comparative proteomic analysis of esophageal squamous cell carcinoma. Proteomics 5:2960–2971CrossRefGoogle Scholar
  28. 28.
    Wang SJ, Zhang LW, Yu WF, Yu JK, Zheng S, Li YS et al (2007) Establishment of a diagnostic model of serum protein fingerprint pattern for esophageal cancer screening in high incidence area and its clinical value. Zhonghua Zhong Liu Za Zhi 29:441–443PubMedGoogle Scholar
  29. 29.
    Liu WL, Zhang G, Wang JY, Cao JY, Guo XZ, Xu LH et al (2008) Proteomics-based identification of autoantibody against CDC25B as a novel serum marker in esophageal squamous cell carcinoma. Biochem Biophys Res Commun 375:440–445CrossRefGoogle Scholar
  30. 30.
    Shao CCS, Chen L, Cobos E, Wang J, Haab BB, Gao W (2009) Antibody microarray analysis of serum glycans in esophageal squamous cell carcinoma cases and controls. Proteomics Clin Appl 3:923–931CrossRefGoogle Scholar
  31. 31.
    Chen JY, Xu L, Fang WM, Han JY, Wang K, Zhu KS (2017) Identification of PA28β as a potential novel biomarker in human esophageal squamous cell carcinoma. Tumour Biol 39:1010428317719780PubMedGoogle Scholar
  32. 32.
    Pawar H, Kashyap MK, Sahasrabuddhe NA, Renuse S, Harsha HC, Kumar P et al (2011) Quantitative tissue proteomics of esophageal squamous cell carcinoma for novel biomarker discovery. Cancer Biol Ther 12:510–522CrossRefGoogle Scholar
  33. 33.
    Yazdian-Robati R, Ahmadi H, Riahi MM, Lari P, Aledavood SA, Rashedinia M et al (2017) Comparative proteome analysis of human esophageal cancer and adjacent normal tissues. Iran J Basic Med Sci 20:265–271PubMedPubMedCentralGoogle Scholar
  34. 34.
    Zhao J, Fan YX, Yang Y, Liu DL, Wu K, Wen FB et al (2015) Identification of potential plasma biomarkers for esophageal squamous cell carcinoma by a proteomic method. Int J Clin Exp Pathol 8:1535–1544PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Farhadul Islam
    • 1
    • 2
  • Vinod Gopalan
    • 1
  • Alfred K. Lam
    • 3
    Email author
  1. 1.Cancer Molecular Pathology of School of MedicineGriffith UniversityGold CoastAustralia
  2. 2.Department of Biochemistry and Molecular BiologyUniversity of RajshahiRajshahiBangladesh
  3. 3.Cancer Molecular Pathology, School of MedicineGriffith UniversityGold CoastAustralia

Personalised recommendations