Advertisement

Roles of MicroRNAs in Esophageal Squamous Cell Carcinoma Pathogenesis

  • Farhadul Islam
  • Vinod Gopalan
  • Alfred K. LamEmail author
Protocol
  • 8 Downloads
Part of the Methods in Molecular Biology book series (MIMB, volume 2129)

Abstract

MicroRNAs (miRNAs) are 20–22 nucleotides long single-stranded noncoding RNAs. They regulate gene expression posttranscriptionally by base pairing with the complementary sequences in the 3′-untranslated region of their targeted mRNA. Aberrant expression of miRNAs leads to alterations in the expression of oncogenes and tumor suppressors, thereby affecting cellular growth, proliferation, apoptosis, motility, and invasion capacity of gastrointestinal cells, including cells of esophageal squamous cell carcinoma (ESCC). Thus, alterations in miRNAs expression associated with the pathogenesis and progression of ESCC. In addition, expression profiles of miRNAs correlated with various clinicopathological factors, including pathological stages, histological differentiation, invasion, metastasis of cancer, as well as survival rates and therapy response of patients with ESCC. Consequently, expression profiles of miRNAs could be useful as diagnostic, prognostic, and prediction biomarkers in ESCC. Herein, we describe the quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and microarray methods for detection and quantitate miRNAs in ESCC. In addition, we summarize the roles of miRNAs in ESCC pathogenesis, progression, and prognosis.

Key words

MicroRNAs Cancer pathogenesis Prognosis qRT-PCR Microarray 

References

  1. 1.
    Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23:4051–4060PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–366PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Rana TM (2007) Illuminating the silence: understanding the structure and function of small RNAs. Nat Rev Mol Cell Biol 8:23–36PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Pratt AJ, MacRae IJ (2009) The RNA-induced silencing complex: a versatile gene-silencing machine. J Biol Chem 284:17897–17901PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433:769–773PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5:522–531PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Alvarez-Garcia I, Miska EA (2005) MicroRNA functions in animal development and human disease. Development 132:4653–4662PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Xiao C, Rajewsky K (2009) MicroRNA control in the immune system: basic principles. Cell 136:26–36PubMedCrossRefGoogle Scholar
  11. 11.
    Song JH, Meltzer SJ (2012) MicroRNAs in pathogenesis, diagnosis, and treatment of gastroesophageal cancers. Gastroenterology 143:35–47.e2PubMedCrossRefGoogle Scholar
  12. 12.
    Guo Y, Chen Z, Zhang L, Zhou F, Shi S, Feng X, Li B, Meng X, Ma X, Luo M, Shao K, Li N, Qiu B, Mitchelson K, Cheng J, He J (2008) Distinctive microRNA profiles relating to patient survival in esophageal squamous cell carcinoma. Cancer Res 68:26–33PubMedCrossRefGoogle Scholar
  13. 13.
    Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838PubMedCrossRefGoogle Scholar
  14. 14.
    Islam F, Gopalan V, Law S, Tang JC, Chan KW, Lam AK (2017) MiR-498 in esophageal squamous cell carcinoma: clinicopathological impacts and functional interactions. Hum Pathol 62:141–151PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Gopalan V, Islam F, Pillai S, Tang JC, Tong DK, Law S, Chan KW, Lam AK (2016) Overexpression of microRNA-1288 in oesophageal squamous cell carcinoma. Exp Cell Res 348:146–154PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Harada K, Baba Y, Ishimoto T, Shigaki H, Kosumi K, Yoshida N, Watanabe M, Baba H (2016) The role of microRNA in esophageal squamous cell carcinoma. J Gastroenterol 51:520–530PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Mei LL, Qiu YT, Zhang B, Shi ZZ (2017) MicroRNAs in esophageal squamous cell carcinoma: potential biomarkers and therapeutic targets. Cancer Biomark 19:1–9PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Matsushima K, Isomoto H, Kohno S, Nakao K (2010) MicroRNAs and esophageal squamous cell carcinoma. Digestion 82:138–144PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Chu Y, Zhu H, Lv L, Zhou Y, Huo J (2013) MiRNA s in oesophageal squamous cancer. Neth J Med 71:69–75PubMedPubMedCentralGoogle Scholar
  20. 20.
    Fu HL, Wu DP, Wang XF, Wang JG, Jiao F, Song LL, Xie H, Wen XY, Shan HS, Du YX, Zhao YP (2013) Altered miRNA expression is associated with differentiation, invasion, and metastasis of esophageal squamous cell carcinoma (ESCC) in patients from Huaian, China. Cell Biochem Biophys 67:657–668PubMedCrossRefGoogle Scholar
  21. 21.
    Liu R, Liao J, Yang M, Sheng J, Yang H, Wang Y, Pan E, Guo W, Pu Y, Kim SJ, Yin L (2012) The cluster of miR-143 and miR-145 affects the risk for esophageal squamous cell carcinoma through co-regulating fascin homolog 1. PLoS One 7:e33987PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Hezova R, Kovarikova A, Srovnal J, Zemanova M, Harustiak T, Ehrmann J, Hajduch M, Svoboda M, Sachlova M, Slaby O (2015) Diagnostic and prognostic potential of miR-21, miR-29c, miR-148 and miR-203 in adenocarcinoma and squamous cell carcinoma of esophagus. Diagn Pathol 10:42PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Akagi I, Miyashita M, Ishibashi O, Mishima T, Kikuchi K, Makino H, Nomura T, Hagiwara N, Uchida E, Takizawa T (2011) Relationship between altered expression levels of MIR21, MIR143, MIR145, and MIR205 and clinicopathologic features of esophageal squamous cell carcinoma. Dis Esophagus 24:523–530PubMedCrossRefGoogle Scholar
  24. 24.
    Li P, Mao WM, Zheng ZG, Dong ZM, Ling ZQ (2013) Down-regulation of PTEN expression modulated by dysregulated miR-21 contributes to the progression of esophageal cancer. Dig Dis Sci 58:3483–3493PubMedCrossRefGoogle Scholar
  25. 25.
    Wang N, Zhang CQ, He JH, Duan XF, Wang YY, Ji X, Zang WQ, Li M, Ma YY, Wang T, Zhao GQ (2013) MiR-21 down-regulation suppresses cell growth, invasion and induces cell apoptosis by targeting FASL, TIMP3, and RECK genes in esophageal carcinoma. Dig Dis Sci 58:1863–1870PubMedCrossRefGoogle Scholar
  26. 26.
    Chen G, Peng J, Zhu W, Tao G, Song Y, Zhou X, Wang W (2014) Combined downregulation of microRNA-133a and microRNA-133b predicts chemosensitivity of patients with esophageal squamous cell carcinoma undergoing paclitaxel-based chemotherapy. Med Oncol 31:263PubMedCrossRefGoogle Scholar
  27. 27.
    Chen ZL, Zhao XH, Wang JW, Li BZ, Wang Z, Sun J, Tan FW, Ding DP, Xu XH, Zhou F, Tan XG, Hang J, Shi SS, Feng XL, He J (2011) microRNA-92a promotes lymph node metastasis of human esophageal squamous cell carcinoma via E-cadherin. J Biol Chem 286:10725–10734PubMedCrossRefGoogle Scholar
  28. 28.
    Hong L, Han Y, Zhang H, Li M, Gong T, Sun L, Wu K, Zhao Q, Fan D (2010) The prognostic and chemotherapeutic value of miR-296 in esophageal squamous cell carcinoma. Ann Surg 251:1056–1063PubMedCrossRefGoogle Scholar
  29. 29.
    Matsushima K, Isomoto H, Yamaguchi N, Inoue N, Machida H, Nakayama T, Hayashi T, Kunizaki M, Hidaka S, Nagayasu T, Nakashima M, Ujifuku K, Mitsutake N, Ohtsuru A, Yamashita S, Korpal M, Kang Y, Gregory PA, Goodall GJ, Kohno S, Nakao K (2011) MiRNA-205 modulates cellular invasion and migration via regulating zinc finger E-box binding homeobox 2 expression in esophageal squamous cell carcinoma cells. J Transl Med 9:30PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Zhang M, Zhou S, Zhang L, Zhang J, Cai H, Zhu J, Huang C, Wang J (2012) miR-518b is down-regulated, and involved in cell proliferation and invasion by targeting Rap1b in esophageal squamous cell carcinoma. FEBS Lett 586:3508–3521PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Akanuma N, Hoshino I, Akutsu Y, Murakami K, Isozaki Y, Maruyama T, Yusup G, Qin W, Toyozumi T, Takahashi M, Suito H, Hu X, Sekino N, Matsubara H (2014) MicroRNA-133a regulates the mRNAs of two invadopodia-related proteins, FSCN1 and MMP14, in esophageal cancer. Br J Cancer 110:189–198PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Huang SD, Yuan Y, Zhuang CW, Li BL, Gong DJ, Wang SG, Zeng ZY, Cheng HZ (2012) MicroRNA-98 and microRNA-214 post-transcriptionally regulate enhancer of zeste homolog 2 and inhibit migration and invasion in human esophageal squamous cell carcinoma. Mol Cancer 11:51PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Xu X, Chen Z, Zhao X, Wang J, Ding D, Wang Z, Tan F, Tan X, Zhou F, Sun J, Sun N, Gao Y, Shao K, Li N, Qiu B, He J (2012) MicroRNA-25 promotes cell migration and invasion in esophageal squamous cell carcinoma. Biochem Biophys Res Commun 421:640–645PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Yokobori T, Suzuki S, Tanaka N, Inose T, Sohda M, Sano A, Sakai M, Nakajima M, Miyazaki T, Kato H, Kuwano H (2013) MiR-150 is associated with poor prognosis in esophageal squamous cell carcinoma via targeting the EMT inducer ZEB1. Cancer Sci 104:48–54PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Sun J, Chen Z, Tan X, Zhou F, Tan F, Gao Y, Sun N, Xu X, Shao K, He J (2013) MicroRNA-99a/100 promotes apoptosis by targeting mTOR in human esophageal squamous cell carcinoma. Med Oncol 30:411PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Isozaki Y, Hoshino I, Nohata N, Kinoshita T, Akutsu Y, Hanari N, Mori M, Yoneyama Y, Akanuma N, Takeshita N, Maruyama T, Seki N, Nishino N, Yoshida M, Matsubara H (2012) Identification of novel molecular targets regulated by tumor suppressive miR-375 induced by histone acetylation in esophageal squamous cell carcinoma. Int J Oncol 41:985–994PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Kong KL, Kwong DL, Chan TH, Law SY, Chen L, Li Y, Qin YR, Guan XY (2012) MicroRNA-375 inhibits tumour growth and metastasis in oesophageal squamous cell carcinoma through repressing insulin-like growth factor 1 receptor. Gut 61:33–42PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Liu R, Yang M, Meng Y, Liao J, Sheng J, Pu Y, Yin L, Kim SJ (2013) Tumor-suppressive function of miR-139-5p in esophageal squamous cell carcinoma. PLoS One 8:e77068PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Sun N, Ye L, Chang T, Li X, Li X (2014) microRNA-195-Cdc42 axis acts as a prognostic factor of esophageal squamous cell carcinoma. Int J Clin Exp Pathol 7:6871–6879PubMedPubMedCentralGoogle Scholar
  40. 40.
    Liu R, Gu J, Jiang P, Zheng Y, Liu X, Jiang X, Huang E, Xiong S, Xu F, Liu G, Ge D, Chu Y (2015) DNMT1-microRNA126 epigenetic circuit contributes to esophageal squamous cell carcinoma growth via ADAM9-EGFR-AKT signaling. Clin Cancer Res 21:854–863PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Liu M, Wang Z, Yang S, Zhang W, He S, Hu C, Zhu H, Quan L, Bai J, Xu N (2011) TNF-α is a novel target of miR-19a. Int J Oncol 38:1013–1022PubMedPubMedCentralGoogle Scholar
  42. 42.
    Li H, Zheng D, Zhang B, Liu L, Ou J, Chen W, Xiong S, Gu Y, Yang J (2014) Mir-208 promotes cell proliferation by repressing SOX6 expression in human esophageal squamous cell carcinoma. J Transl Med 12:196PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Harazono Y, Muramatsu T, Endo H, Uzawa N, Kawano T, Harada K, Inazawa J, Kozaki K (2013) miR-655 Is an EMT-suppressive microRNA targeting ZEB1 and TGFBR2. PLoS One 8:e62757PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Liu K, Li L, Rusidanmu A, Wang Y, Lv X (2015) Down-regulation of MiR-1294 is related to dismal prognosis of patients with esophageal squamous cell carcinoma through elevating C-MYC expression. Cell Physiol Biochem 36:100–110PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Song Y, Li J, Zhu Y, Dai Y, Zeng T, Liu L, Li J, Wang H, Qin Y, Zeng M, Guan XY, Li Y (2014) MicroRNA-9 promotes tumor metastasis via repressing E-cadherin in esophageal squamous cell carcinoma. Oncotarget 5:11669–11680PubMedPubMedCentralGoogle Scholar
  46. 46.
    Wang XC, Zhang ZB, Wang YY, Wu HY, Li DG, Meng AM, Fan FY (2013) Increased miRNA-22 expression sensitizes esophageal squamous cell carcinoma to irradiation. J Radiat Res 54:401–408PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Zhang HF, Zhang K, Liao LD, Li LY, Du ZP, Wu BL, Wu JY, Xu XE, Zeng FM, Chen B, Cao HH, Zhu MX, Dai LH, Long L, Wu ZY, Lai R, Xu LY, Li EM (2014) miR-200b suppresses invasiveness and modulates the cytoskeletal and adhesive machinery in esophageal squamous cell carcinoma cells via targeting Kindlin-2. Carcinogenesis 35:292–301PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Lin C, Liu A, Zhu J, Zhang X, Wu G, Ren P, Wu J, Li M, Li J, Song L (2014) miR-508 sustains phosphoinositide signalling and promotes aggressive phenotype of oesophageal squamous cell carcinoma. Nat Commun 5:4620PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Zhao Y, Schetter AJ, Yang GB, Nguyen G, Mathé EA, Li P, Cai H, Yu L, Liu F, Hang D, Yang H, Wang XW, Ke Y, Harris CC (2013) microRNA and inflammatory gene expression as prognostic marker for overall survival in esophageal squamous cell carcinoma. Int J Cancer 132:2901–2909PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Ge C, Wu S, Wang W, Liu Z, Zhang J, Wang Z, Li R, Zhang Z, Li Z, Dong S, Wang Y, Xue Y, Yang J, Tan Q, Wang Z, Song X (2015) miR-942 promotes cancer stem cell-like traits in esophageal squamous cell carcinoma through activation of Wnt/β-catenin signalling pathway. Oncotarget 6:10964–10977PubMedPubMedCentralGoogle Scholar
  51. 51.
    Zhou S, Yang B, Zhao Y, Xu S, Zhang H, Li Z (2014) Prognostic value of microRNA-100 in esophageal squamous cell carcinoma. J Surg Res 192:515–520PubMedCrossRefGoogle Scholar
  52. 52.
    Kurashige J, Watanabe M, Iwatsuki M, Kinoshita K, Saito S, Hiyoshi Y, Kamohara H, Baba Y, Mimori K, Baba H (2012) Overexpression of microRNA-223 regulates the ubiquitin ligase FBXW7 in oesophageal squamous cell carcinoma. Br J Cancer 106:182–188PubMedCrossRefGoogle Scholar
  53. 53.
    Xu XL, Jiang YH, Feng JG, Su D, Chen PC, Mao WM (2014) MicroRNA-17, microRNA-18a, and microRNA-19a are prognostic indicators in esophageal squamous cell carcinoma. Ann Thorac Surg 97:1037–1045PubMedCrossRefGoogle Scholar
  54. 54.
    Lin RJ, Xiao DW, Liao LD, Chen T, Xie ZF, Huang WZ, Wang WS, Jiang TF, Wu BL, Li EM, Xu LY (2012) MiR-142-3p as a potential prognostic biomarker for esophageal squamous cell carcinoma. J Surg Oncol 105:175–182PubMedCrossRefGoogle Scholar
  55. 55.
    Zhang M, Yang Q, Zhang L, Zhou S, Ye W, Yao Q, Li Z, Huang C, Wen Q, Wang J (2014) miR-302b is a potential molecular marker of esophageal squamous cell carcinoma and functions as a tumor suppressor by targeting ErbB4. J Exp Clin Cancer Res 33:10PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Farhadul Islam
    • 1
    • 2
  • Vinod Gopalan
    • 1
  • Alfred K. Lam
    • 3
    Email author
  1. 1.Cancer Molecular Pathology of School of MedicineGriffith UniversityGold CoastAustralia
  2. 2.Department of Biochemistry and Molecular BiologyUniversity of RajshahiRajshahiBangladesh
  3. 3.Cancer Molecular Pathology, School of MedicineGriffith UniversityGold CoastAustralia

Personalised recommendations