In Vitro Assays of Biological Aggressiveness of Esophageal Squamous Cell Carcinoma

  • Farhadul Islam
  • Vinod Gopalan
  • Alfred K. LamEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 2129)


Researchers are developing new techniques and technologies to determine the characteristic features for cancer progression, thereby identifying potential targets and therapeutics to interfere these hallmark processes of cancer pathogenesis. The transformative researches using these in vitro methods have enable researchers to design precision treatments of patients with esophageal squamous cell carcinoma (ESCC). These in vitro methods mainly include analysis of cell proliferation, cytotoxicity, colony formation, invasion, and migration in ESCC cells for analyzing manipulations affecting the biological behavior of ESCC. Because of these studies, important information on molecular mechanisms of different genes and proteins as well as result of therapeutic interventions are confirmed in ESCC.

Key words

Biological aggressiveness Cell proliferation Cytotoxicity Invasion Migration 


  1. 1.
    Chang JC (2016) Cancer stem cells: role in tumor growth, recurrence, metastasis, and treatment resistance. Medicine (Baltimore) 95:S20–S25CrossRefGoogle Scholar
  2. 2.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674CrossRefGoogle Scholar
  3. 3.
    Menyhárt O, Harami-Papp H, Sukumar S, Schäfer R, Magnani L, Barrios d et al (2016) Guidelines for the selection of functional assays to evaluate the hallmarks of cancer. Biochim Biophys Acta 1866:300–319PubMedPubMedCentralGoogle Scholar
  4. 4.
    Weisenberger DJ, Liang G, Lenz HJ (2018) DNA methylation aberrancies delineate clinically distinct subsets of colorectal cancer and provide novel targets for epigenetic therapies. Oncogene 37:566–577PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Islam F, Gopalan F, Lam AKY (2019) Cancer stem cells: role in tumor progression and treatment resistance. In: Dammacco F, Silvestris F (eds) Oncogenomics: from basic research to precision medicine. Academic Press, Cambridge, pp 77–87CrossRefGoogle Scholar
  6. 6.
    Grillet F, Bayet E, Villeronce O, Zappia L, Lagerqvist EL, Lunke S et al (2017) Circulating tumour cells from patients with colorectal cancer have cancer stem cell hallmarks in ex vivo culture. Gut 66:1802–1810PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Vinci M, Gowan S, Boxall F, Patterson L, Zimmermann M, Court W et al (2012) Advances in establishment and analysis of three-dimensional tumor spheroid-based functional assays for target validation and drug evaluation. BMC Biol 10:29PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Chan D, Zhou Y, Chui CH, Lam KH, Law S, Chan AS, Li X, Lam AK, Tang JCO (2018) Expression of insulin-like growth factor binding protein-5 (IGFBP5) reverses cisplatin-resistance in esophageal carcinoma. Cell 7:E143CrossRefGoogle Scholar
  9. 9.
    Li B, Xu WW, Lam AKY, Wang Y, Hu HF, Guan XY, Qin YR, Saremi N, Tsao SW, He QY, Cheung ALM (2017) Significance of PI3K/AKT signaling pathway in metastasis of esophageal squamous cell carcinoma and its potential as a target for anti-metastasis therapy. Oncotarget 8:38755–38766PubMedPubMedCentralGoogle Scholar
  10. 10.
    Pun IH, Chan D, Chan SH, Chung PY, Zhou YY, Law S, Lam AK, Chui CH, Chan AS, Lam KH, Tang JC (2017) Anti-cancer effects of a novel quinoline derivative 83b1 on human esophageal squamous cell carcinoma through down-regulation of COX-2 mRNA and PGE(2). Cancer Res Treat 49:219–229PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Islam F, Gopalan V, Law S, Tang JC, Chan KW, Lam AK (2017) MiR-498 in esophageal squamous cell carcinoma: clinicopathological impacts and functional interactions. Hum Pathol 62:141–151PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Chai AW, Cheung AK, Dai W, Ko JM, Ip JC, Chan KW, Kwong DL, Ng WT, Lee AW, Ngan RK, Yau CC, Tung SY, Lee VH, Lam AK, Pillai S, Law S, Lung ML (2016) Metastasis-suppressing NID2, an epigenetically-silenced gene, in the pathogenesis of nasopharyngeal carcinoma and esophageal squamous cell carcinoma. Oncotarget 7:78859–78871PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Gopalan V, Islam F, Pillai S, Tang JC, Tong DK, Law S, Chan KW, Lam AK (2016) Overexpression of microRNA-1288 in oesophageal squamous cell carcinoma. Exp Cell Res 348:146–154PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Yu VZ, Wong VC, Dai W, Ko JM, Lam AK, Chan KW, Samant RS, Lung HL, Shuen WH, Law S, Chan YP, Lee NP, Tong DK, Law TT, Lee VH, Lung ML (2015) Nuclear localization of dnajb6 is associated with survival of patients with esophageal cancer and reduces AKT signaling and proliferation of cancer cells. Gastroenterology 149:1825–1836PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Xu WW, Li B, Lam AK, Tsao SW, Law SY, Chan KW, Yuan QJ, Cheung AL (2015) Targeting VEGFR1- and VEGFR2-expressing non-tumor cells is essential for esophageal cancer therapy. Oncotarget 6:1790–1805PubMedPubMedCentralGoogle Scholar
  16. 16.
    Chan D, Tsoi MY, Liu CD, Chan SH, Law SY, Chan KW, Chan YP, Gopalan V, Lam AK, Tang JC (2013) Oncogene GAEC1 regulates CAPN10 expression which predicts survival in esophageal squamous cell carcinoma. World J Gastroenterol 19:2772–2780PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Pak KC, Lam KY, Law S, Tang JC (2009) The inhibitory effect of Gleditsia sinensis on cyclooxygenase-2 expression in human esophageal squamous cell carcinoma. Int J Mol Med 23:121–129PubMedGoogle Scholar
  18. 18.
    Law FB, Chen YW, Wong KY, Ying J, Tao Q, Langford C, Lee PY, Law S, Cheung RW, Chui CH, Tsao SW, Lam KY, Wong J, Srivastava G, Tang JC (2007) Identification of a novel tumor transforming gene GAEC1 at 7q22 which encodes a nuclear protein and is frequently amplified and overexpressed in esophageal squamous cell carcinoma. Oncogene 26:5877–5888PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Tang WK, Chui CH, Fatima S, Kok SH, Pak KC, Ou TM, Hui KS, Wong MM, Wong J, Law S, Tsao SW, Lam KY, Beh PS, Srivastava G, Ho KP, Chan AS, Tang JC (2007) Inhibitory effects of Gleditsia sinensis fruit extract on telomerase activity and oncogenic expression in human esophageal squamous cell carcinoma. Int J Mol Med 19:953–960PubMedPubMedCentralGoogle Scholar
  20. 20.
    Islam F, Gopalan V, Lam AK, Kabir SR (2018) Pea lectin inhibits cell growth by inducing apoptosis in SW480 and SW48 cell lines. Int J Biol Macromol 117:1050–1057PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Islam F, Gopalan V, Lam AK (2018) RNA interference-mediated gene silencing in esophageal adenocarcinoma. Methods Mol Biol 1756:269–279PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Islam F, Khatun H, Khatun M, Ali SM, Khanam JA (2014) Growth inhibition and apoptosis of Ehrlich ascites carcinoma cells by the methanol extract of Eucalyptus camaldulensis. Pharm Biol 52:281–290PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Islam F, Raihan O, Chowdhury D, Khatun M, Zuberi N, Khatun L et al (2015) Apoptotic and antioxidant activities of methanol extract of Mussaenda roxburghii leaves. Pak J Pharm Sci 28:2027–2034PubMedPubMedCentralGoogle Scholar
  24. 24.
    Islam F, Khanam JA, Khatun M, Zuberi N, Khatun L, Kabir SR et al (2015) A p-menth-1-ene-4,7-diol (EC-1) from Eucalyptus camaldulensis Dhnh. Triggers apoptosis and cell cycle changes in Ehrlich ascites carcinoma cells. Phytother Res 29:573–581PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Lam AK (2000) Molecular biology of esophageal squamous cell carcinoma. Crit Rev Oncol Hematol 33:71–90PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Berridge MV, Herst PM, Tan AS (2005) Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnol Annu Rev 11:127–152PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Scudiero DA, Shoemaker RH, Paull KD, Monks A, Tierney S, Nofziger TH et al (1988) Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Res 48:4827–4833PubMedPubMedCentralGoogle Scholar
  29. 29.
    Cory AH, Owen TC, Barltrop JA, Cory JG (1991) Use of an aqueous soluble tetrazolium/formazan assay for cell growth assays in culture. Cancer Commun 3:207–212PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Maekawa Y, Yagi K, Nonomura A, Kuraoku R, Nishiura E, Uchibori E et al (2003) A tetrazolium-based colorimetric assay for metabolic activity of stored blood platelets. Thromb Res 109:307–314PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D (1990) New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst 82:1107–1112PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Riccardi C, Nicoletti I (2006) Analysis of apoptosis by propidium iodide staining and flow cytometry. Nat Protoc 1:1458–1461PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Roth BL, Poot M, Yue ST, Millard PJ (1997) Bacterial viability and antibiotic susceptibility testing with SYTOX green nucleic acid stain. Appl Environ Microbiol 63:2421–2431PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Cho MH, Niles A, Huang R, Inglese J, Austin CP, Riss T et al (2008) A bioluminescent cytotoxicity assay for assessment of membrane integrity using a proteolytic biomarker. Toxicol In Vitro 22:1099–10106PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Sidman RL, Miale IL, Feder N (1959) Cell proliferation and migration in the primitive ependymal zone: an autoradiographic study of histogenesis in the nervous system. Exp Neurol 1:322–333PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Duque A, Rakic P (2011) Different effects of BrdU and (3) H-thymidine incorporation into DNA on cell proliferation, position and fate. J Neurosci 31:15205–15217PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Artymovich K, Appledorn DM (2015) A multiplexed method for kinetic measurements of apoptosis and proliferation using live-content imaging. Methods Mol Biol 1219:35–42PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Oberhammer F, Wilson JW, Dive C, Morris ID, Hickman JA, Wakeling AE et al (1993) Apoptotic death in epithelial cells: cleavage of DNA to 300 and/or 50 kb fragments prior to or in the absence of internucleosomal fragmentation. EMBO J 12:3679–3684PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Ehemann V, Sykora J, Vera-Delgado J, Lange A, Otto HF (2003) Flow cytometric detection of spontaneous apoptosis in human breast cancer using the TUNEL-technique. Cancer Lett 194:125–131PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    van Engeland M, Ramaekers FC, Schutte B, Reutelingsperger CP (1996) A novel assay to measure loss of plasma membrane asymmetry during apoptosis of adherent cells in culture. Cytometry 24:131–139PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Decker T, Lohmann-Matthes ML (1988) A quick and simple method for the quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity and tumor necrosis factor (TNF) activity. J Immunol Methods 115:61–69PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Smolewski P, Bedner E, Du L, Hsieh TC, Wu JM, Phelps DJ et al (2001) Detection of caspases activation by fluorochrome-labeled inhibitors: multiparameter analysis by laser scanning cytometry. Cytometry 44:73–82PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Soldani C, Lazzè MC, Bottone MG, Tognon G, Biggiogera M, Pellicciari CE et al (2001) Poly(ADP-ribose) polymerase cleavage during apoptosis: when and where? Exp Cell Res 269:193–201PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Kimura M, Stone RC, Hunt SC, Skurnick J, Lu X, Cao X et al (2010) Measurement of telomere length by the southern blot analysis of terminal restriction fragment lengths. Nat Protoc 5:1596–1607PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Skvortsov DA, Zvereva ME, Shpanchenko OV, Dontsova OA (2011) Assays for detection of telomerase activity. Acta Nat 3:48–68CrossRefGoogle Scholar
  46. 46.
    Gagnon E, Cattaruzzi P, Griffith M, Muzakare L, LeFlao K, Faure R et al (2002) Human vascular endothelial cells with extended life spans: in vitro cell response, protein expression, and angiogenesis. Angiogenesis 5:21–33PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Fan F, Wey JS, McCarty MF, Belcheva A, Liu W, Bauer TW et al (2005) Expression and function of vascular endothelial growth factor receptor-1 on human colorectal cancer cells. Oncogene 24:2647–2653PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Boyden S (1962) The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J Exp Med 115:453–466PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Liang CC, Park AY, Guan JL (2007) In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc 2:329–333PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Farhadul Islam
    • 1
    • 2
  • Vinod Gopalan
    • 1
  • Alfred K. Lam
    • 1
    Email author
  1. 1.Cancer Molecular Pathology, School of MedicineGriffith UniversityGold CoastAustralia
  2. 2.Department of Biochemistry and Molecular BiologyUniversity of RajshahiRajshahiBangladesh

Personalised recommendations