Advertisement

Sample Preparation and Technical Setup for NMR Spectroscopy with Integral Membrane Proteins

  • Hundeep Kaur
  • Anne Grahl
  • Jean-Baptiste Hartmann
  • Sebastian HillerEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2127)

Abstract

NMR spectroscopy is a method of choice to characterize structure, function, and dynamics of integral membrane proteins at atomic resolution. Here, we describe protocols for sample preparation and characterization by NMR spectroscopy of two integral membrane proteins with different architecture, the α-helical membrane protein MsbA and the β-barrel membrane protein BamA. The protocols describe recombinant expression in E. coli, protein refolding, purification, and reconstitution in suitable membrane mimetics, as well as key setup steps for basic NMR experiments. These include experiments on protein samples in the solid state under magic angle spinning (MAS) conditions and experiments on protein samples in aqueous solution. Since MsbA and BamA are typical examples of their respective architectural classes, the protocols presented here can also serve as a reference for other integral membrane proteins.

Key words

Nuclear magnetic resonance Solid-state NMR Magic angle spinning NMR MsbA BamA Protein reconstitution Membrane proteins Dynamics 

Notes

Acknowledgment

This work was supported by the Swiss National Science Foundation and the NFP 72 (grants 31003A_166426 and 407240_167125 to S.H.).

References

  1. 1.
    Wallin E, von Heijne G (1998) Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci 7(4):1029–1038.  https://doi.org/10.1002/pro.5560070420CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Lundstrom K (2007) Structural genomics and drug discovery. J Cell Mol Med 11(2):224–238.  https://doi.org/10.1111/j.1582-4934.2007.00028.xCrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Muchmore SW, Sattler M, Liang H, Meadows RP, Harlan JE, Yoon HS, Nettesheim D, Chang BS, Thompson CB, Wong SL, Ng SL, Fesik SW (1996) X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature 381(6580):335–341.  https://doi.org/10.1038/381335a0CrossRefPubMedGoogle Scholar
  4. 4.
    Hartmann JB, Zahn M, Burmann IM, Bibow S, Hiller S (2018) Sequence-specific solution NMR assignments of the beta-barrel Insertase BamA to monitor its conformational Ensemble at the Atomic Level. J Am Chem Soc 140(36):11252–11260.  https://doi.org/10.1021/jacs.8b03220CrossRefPubMedGoogle Scholar
  5. 5.
    Sborgi L, Ravotti F, Dandey VP, Dick MS, Mazur A, Reckel S, Chami M, Scherer S, Huber M, Bockmann A, Egelman EH, Stahlberg H, Broz P, Meier BH, Hiller S (2015) Structure and assembly of the mouse ASC inflammasome by combined NMR spectroscopy and cryo-electron microscopy. Proc Natl Acad Sci U S A 112(43):13237–13242.  https://doi.org/10.1073/pnas.1507579112CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Kaur H, Abreu B, Akhmetzyanov D, Lakatos-Karoly A, Soares CM, Prisner T, Glaubitz C (2018) Unexplored nucleotide binding modes for the ABC exporter MsbA. J Am Chem Soc 140(43):14112–14125.  https://doi.org/10.1021/jacs.8b06739CrossRefPubMedGoogle Scholar
  7. 7.
    Wiegand T, Lacabanne D, Keller K, Cadalbert R, Lecoq L, Yulikov M, Terradot L, Jeschke G, Meier BH, Bockmann A (2017) Solid-state NMR and EPR spectroscopy of Mn(2+)-substituted ATP-fueled protein engines. Angew Chem Int Ed Engl 56(12):3369–3373.  https://doi.org/10.1002/anie.201610551CrossRefPubMedGoogle Scholar
  8. 8.
    Hellmich UA, Lyubenova S, Kaltenborn E, Doshi R, van Veen HW, Prisner TF, Glaubitz C (2012) Probing the ATP hydrolysis cycle of the ABC multidrug transporter LmrA by pulsed EPR spectroscopy. J Am Chem Soc 134(13):5857–5862.  https://doi.org/10.1021/ja211007tCrossRefPubMedGoogle Scholar
  9. 9.
    Liang B, Tamm LK (2007) Structure of outer membrane protein G by solution NMR spectroscopy. Proc Natl Acad Sci U S A 104(41):16140–16145.  https://doi.org/10.1073/pnas.0705466104CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Hiller S, Garces RG, Malia TJ, Orekhov VY, Colombini M, Wagner G (2008) Solution structure of the integral human membrane protein VDAC-1 in detergent micelles. Science 321(5893):1206–1210.  https://doi.org/10.1126/science.1161302CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Lee M, Wang T, Makhlynets OV, Wu Y, Polizzi NF, Wu H, Gosavi PM, Stohr J, Korendovych IV, DeGrado WF, Hong M (2017) Zinc-binding structure of a catalytic amyloid from solid-state NMR. Proc Natl Acad Sci U S A 114(24):6191–6196.  https://doi.org/10.1073/pnas.1706179114CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Milikisiyants S, Wang S, Munro RA, Donohue M, Ward ME, Bolton D, Brown LS, Smirnova TI, Ladizhansky V, Smirnov AI (2017) Oligomeric structure of Anabaena sensory rhodopsin in a lipid bilayer environment by combining solid-state NMR and long-range DEER constraints. J Mol Biol 429(12):1903–1920.  https://doi.org/10.1016/j.jmb.2017.05.005CrossRefPubMedGoogle Scholar
  13. 13.
    Pauli J, Baldus M, van Rossum B, de Groot H, Oschkinat H (2001) Backbone and side-chain 13C and 15N signal assignments of the alpha-spectrin SH3 domain by magic angle spinning solid-state NMR at 17.6 tesla. Chembiochem 2(4):272–281CrossRefPubMedGoogle Scholar
  14. 14.
    Karyolaimos A, Ampah-Korsah H, Zhang Z, de Gier JW (2018) Shaping Escherichia coli for recombinant membrane protein production. FEMS Microbiol Lett 365(15).  https://doi.org/10.1093/femsle/fny152
  15. 15.
    von Heijne G (1999) Recent advances in the understanding of membrane protein assembly and structure. Q Rev Biophys 32(4):285–307CrossRefGoogle Scholar
  16. 16.
    Drew D, Lerch M, Kunji E, Slotboom DJ, de Gier JW (2006) Optimization of membrane protein overexpression and purification using GFP fusions. Nat Methods 3(4):303–313.  https://doi.org/10.1038/nmeth0406-303CrossRefPubMedGoogle Scholar
  17. 17.
    Bannwarth M, Schulz GE (2003) The expression of outer membrane proteins for crystallization. Biochim Biophys Acta 1610(1):37–45CrossRefPubMedGoogle Scholar
  18. 18.
    Tamm LK, Hong H, Liang B (2004) Folding and assembly of beta-barrel membrane proteins. Biochim Biophys Acta 1666(1–2):250–263.  https://doi.org/10.1016/j.bbamem.2004.06.011CrossRefPubMedGoogle Scholar
  19. 19.
    Hiller S, Abramson J, Mannella C, Wagner G, Zeth K (2010) The 3D structures of VDAC represent a native conformation. Trends Biochem Sci 35(9):514–521.  https://doi.org/10.1016/j.tibs.2010.03.005CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Raschle T, Hiller S, Etzkorn M, Wagner G (2010) Nonmicellar systems for solution NMR spectroscopy of membrane proteins. Curr Opin Struct Biol 20(4):471–479.  https://doi.org/10.1016/j.sbi.2010.05.006CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Sanders CR 2nd, Landis GC (1995) Reconstitution of membrane proteins into lipid-rich bilayered mixed micelles for NMR studies. Biochemistry 34(12):4030–4040.  https://doi.org/10.1021/bi00012a022CrossRefPubMedGoogle Scholar
  22. 22.
    Prosser RS, Evanics F, Kitevski JL, Al-Abdul-Wahid MS (2006) Current applications of bicelles in NMR studies of membrane-associated amphiphiles and proteins. Biochemistry 45(28):8453–8465.  https://doi.org/10.1021/bi060615uCrossRefPubMedGoogle Scholar
  23. 23.
    Brown LS, Ladizhansky V (2015) Membrane proteins in their native habitat as seen by solid-state NMR spectroscopy. Protein Sci 24(9):1333–1346.  https://doi.org/10.1002/pro.2700CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Warschawski DE, Arnold AA, Beaugrand M, Gravel A, Chartrand E, Marcotte I (2011) Choosing membrane mimetics for NMR structural studies of transmembrane proteins. Biochim Biophys Acta 1808(8):1957–1974.  https://doi.org/10.1016/j.bbamem.2011.03.016CrossRefPubMedGoogle Scholar
  25. 25.
    Krueger-Koplin RD, Sorgen PL, Krueger-Koplin ST, Rivera-Torres IO, Cahill SM, Hicks DB, Grinius L, Krulwich TA, Girvin ME (2004) An evaluation of detergents for NMR structural studies of membrane proteins. J Biomol NMR 28(1):43–57.  https://doi.org/10.1023/B:JNMR.0000012875.80898.8fCrossRefPubMedGoogle Scholar
  26. 26.
    Mio K, Sato C (2018) Lipid environment of membrane proteins in cryo-EM based structural analysis. Biophys Rev 10(2):307–316.  https://doi.org/10.1007/s12551-017-0371-6CrossRefPubMedGoogle Scholar
  27. 27.
    Mineev KS, Nadezhdin KD, Goncharuk SA, Arseniev AS (2016) Characterization of small isotropic Bicelles with various compositions. Langmuir 32(26):6624–6637.  https://doi.org/10.1021/acs.langmuir.6b00867CrossRefPubMedGoogle Scholar
  28. 28.
    Doerrler WT, Raetz CR (2002) ATPase activity of the MsbA lipid flippase of Escherichia coli. J Biol Chem 277(39):36697–36705.  https://doi.org/10.1074/jbc.M205857200CrossRefPubMedGoogle Scholar
  29. 29.
    Mi W, Li Y, Yoon SH, Ernst RK, Walz T, Liao M (2017) Structural basis of MsbA-mediated lipopolysaccharide transport. Nature 549(7671):233–237.  https://doi.org/10.1038/nature23649CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Siarheyeva A, Sharom FJ (2009) The ABC transporter MsbA interacts with lipid a and amphipathic drugs at different sites. Biochem J 419(2):317–328.  https://doi.org/10.1042/BJ20081364CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Knowles TJ, Scott-Tucker A, Overduin M, Henderson IR (2009) Membrane protein architects: the role of the BAM complex in outer membrane protein assembly. Nat Rev Microbiol 7(3):206–214.  https://doi.org/10.1038/nrmicro2069CrossRefPubMedGoogle Scholar
  32. 32.
    Han L, Zheng J, Wang Y, Yang X, Liu Y, Sun C, Cao B, Zhou H, Ni D, Lou J, Zhao Y, Huang Y (2016) Structure of the BAM complex and its implications for biogenesis of outer-membrane proteins. Nat Struct Mol Biol 23(3):192–196.  https://doi.org/10.1038/nsmb.3181CrossRefPubMedGoogle Scholar
  33. 33.
    Malinverni JC, Werner J, Kim S, Sklar JG, Kahne D, Misra R, Silhavy TJ (2006) YfiO stabilizes the YaeT complex and is essential for outer membrane protein assembly in Escherichia coli. Mol Microbiol 61(1):151–164.  https://doi.org/10.1111/j.1365-2958.2006.05211.xCrossRefPubMedGoogle Scholar
  34. 34.
    Wu T, Malinverni J, Ruiz N, Kim S, Silhavy TJ, Kahne D (2005) Identification of a multicomponent complex required for outer membrane biogenesis in Escherichia coli. Cell 121(2):235–245.  https://doi.org/10.1016/j.cell.2005.02.015CrossRefPubMedGoogle Scholar
  35. 35.
    Wasylishen R, Fyfe C (1982) High-resolution NMR of solids. In: Annual reports on NMR spectroscopy, vol 12. Elsevier, Amsterdam, pp 1–290CrossRefGoogle Scholar
  36. 36.
    Dudley R, Fyfe C, Stephenson P, Deslandes Y, Hamer G, Marchessault RJJACS (1983) High-resolution carbon-13 CP/MAS NMR spectra of solid cellulose oligomers and the structure of cellulose II. J Am Chem Soc 105(8):2469–2472CrossRefGoogle Scholar
  37. 37.
    Duer MJ (2008) Solid state NMR spectroscopy: principles and applications. WileyGoogle Scholar
  38. 38.
    Apperley DC, Harris RK, Hodgkinson P (2012) Solid-state NMR: basic principles and practice. Momentum PressGoogle Scholar
  39. 39.
    Schaefer J, Stejskal EO (1976) Carbon-13 nuclear magnetic resonance of polymers spinning at the magic angle. J Am Chem Soc 98(4):1031–1032CrossRefGoogle Scholar
  40. 40.
    Agarwal V, Penzel S, Szekely K, Cadalbert R, Testori E, Oss A, Past J, Samoson A, Ernst M, Bockmann A, Meier BH (2014) De novo 3D structure determination from sub-milligram protein samples by solid-state 100 kHz MAS NMR spectroscopy. Angew Chem Int Ed Engl 53(45):12253–12256.  https://doi.org/10.1002/anie.201405730CrossRefPubMedGoogle Scholar
  41. 41.
    Chevelkov V, Rehbein K, Diehl A, Reif B (2006) Ultrahigh resolution in proton solid-state NMR spectroscopy at high levels of deuteration. Angew Chem Int Ed Engl 45(23):3878–3881.  https://doi.org/10.1002/anie.200600328CrossRefPubMedGoogle Scholar
  42. 42.
    Ishii Y, Tycko R (2000) Sensitivity enhancement in solid state (15)N NMR by indirect detection with high-speed magic angle spinning. J Magn Reson 142(1):199–204.  https://doi.org/10.1006/jmre.1999.1976CrossRefPubMedGoogle Scholar
  43. 43.
    Ishii Y, Yesinowski JP, Tycko R (2001) Sensitivity enhancement in solid-state (13)C NMR of synthetic polymers and biopolymers by (1)H NMR detection with high-speed magic angle spinning. J Am Chem Soc 123(12):2921–2922.  https://doi.org/10.1021/ja015505jCrossRefPubMedGoogle Scholar
  44. 44.
    Linser R, Dasari M, Hiller M, Higman V, Fink U, Lopez del Amo JM, Markovic S, Handel L, Kessler B, Schmieder P, Oesterhelt D, Oschkinat H, Reif B (2011) Proton-detected solid-state NMR spectroscopy of fibrillar and membrane proteins. Angew Chem Int Ed Engl 50(19):4508–4512.  https://doi.org/10.1002/anie.201008244CrossRefPubMedGoogle Scholar
  45. 45.
    Reif B, Griffin RG (2003) 1H detected 1H,15N correlation spectroscopy in rotating solids. J Magn Reson 160(1):78–83CrossRefPubMedGoogle Scholar
  46. 46.
    Gopinath T, Mote KR, Veglia G (2013) Sensitivity and resolution enhancement of oriented solid-state NMR: application to membrane proteins. Prog Nucl Mag Res Sp 75:50–68.  https://doi.org/10.1016/j.pnmrs.2013.07.004CrossRefGoogle Scholar
  47. 47.
    Hansen SK, Bertelsen K, Paaske B, Nielsen NC, Vosegaard T (2015) Solid-state NMR methods for oriented membrane proteins. Prog Nucl Magn Reson Spectrosc 88-89:48–85.  https://doi.org/10.1016/j.pnmrs.2015.05.001CrossRefPubMedGoogle Scholar
  48. 48.
    Park SH, Das BB, Casagrande F, Tian Y, Nothnagel HJ, Chu M, Kiefer H, Maier K, De Angelis AA, Marassi FM, Opella SJ (2012) Structure of the chemokine receptor CXCR1 in phospholipid bilayers. Nature 491(7426):779–783.  https://doi.org/10.1038/nature11580CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Eddy MT, Ong TC, Clark L, Teijido O, van der Wel PC, Garces R, Wagner G, Rostovtseva TK, Griffin RG (2012) Lipid dynamics and protein-lipid interactions in 2D crystals formed with the beta-barrel integral membrane protein VDAC1. J Am Chem Soc 134(14):6375–6387.  https://doi.org/10.1021/ja300347vCrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Li Y, Berthold DA, Frericks HL, Gennis RB, Rienstra CM (2007) Partial (13)C and (15)N chemical-shift assignments of the disulfide-bond-forming enzyme DsbB by 3D magic-angle spinning NMR spectroscopy. Chembiochem 8(4):434–442.  https://doi.org/10.1002/cbic.200600484CrossRefPubMedGoogle Scholar
  51. 51.
    Shi L, Ahmed MA, Zhang W, Whited G, Brown LS, Ladizhansky V (2009) Three-dimensional solid-state NMR study of a seven-helical integral membrane proton pump--structural insights. J Mol Biol 386(4):1078–1093.  https://doi.org/10.1016/j.jmb.2009.01.011CrossRefPubMedGoogle Scholar
  52. 52.
    Retel JS, Nieuwkoop AJ, Hiller M, Higman VA, Barbet-Massin E, Stanek J, Andreas LB, Franks WT, van Rossum BJ, Vinothkumar KR, Handel L, de Palma GG, Bardiaux B, Pintacuda G, Emsley L, Kuhlbrandt W, Oschkinat H (2017) Structure of outer membrane protein G in lipid bilayers. Nat Commun 8:2073.  https://doi.org/10.1038/s41467-017-02228-2CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Lacabanne D, Kunert B, Gardiennet C, Meier BH, Bo Ckmann A (2017) Sample preparation for membrane protein structural studies by solid-state NMR. Methods Mol Biol 1635:345–358.  https://doi.org/10.1007/978-1-4939-7151-0_19CrossRefPubMedGoogle Scholar
  54. 54.
    Ward ME, Shi L, Lake E, Krishnamurthy S, Hutchins H, Brown LS, Ladizhansky V (2011) Proton-detected solid-state NMR reveals intramembrane polar networks in a seven-helical transmembrane protein proteorhodopsin. J Am Chem Soc 133(43):17434–17443.  https://doi.org/10.1021/ja207137hCrossRefPubMedGoogle Scholar
  55. 55.
    Kijac AZ, Li Y, Sligar SG, Rienstra CM (2007) Magic-angle spinning solid-state NMR spectroscopy of nanodisc-embedded human CYP3A4. Biochemistry 46(48):13696–13703.  https://doi.org/10.1021/bi701411gCrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Ladizhansky V (2017) Applications of solid-state NMR to membrane proteins. Biochim Biophys Acta Proteins Proteom 1865(11 Pt B):1577–1586.  https://doi.org/10.1016/j.bbapap.2017.07.004CrossRefPubMedGoogle Scholar
  57. 57.
    Cross TA, Opella SJ (1994) Solid-state NMR structural studies of peptides and proteins in membranes. Curr Opin Struct Biol 4(4):574–581.  https://doi.org/10.1016/S0959-440x(94)90220-8CrossRefGoogle Scholar
  58. 58.
    Rigaud JL, Levy D (2003) Reconstitution of membrane proteins into liposomes. Methods Enzymol 372:65–86.  https://doi.org/10.1016/S0076-6879(03)72004-7CrossRefPubMedGoogle Scholar
  59. 59.
    Rigaud JL, Pitard B, Levy D (1995) Reconstitution of membrane proteins into liposomes: application to energy-transducing membrane proteins. Biochim Biophys Acta 1231(3):223–246CrossRefPubMedGoogle Scholar
  60. 60.
    Geertsma ER, Nik Mahmood NA, Schuurman-Wolters GK, Poolman B (2008) Membrane reconstitution of ABC transporters and assays of translocator function. Nat Protoc 3(2):256–266.  https://doi.org/10.1038/nprot.2007.519CrossRefPubMedGoogle Scholar
  61. 61.
    Morris GA, Freeman R (2011) Selective excitation in Fourier transform nuclear magnetic resonance. 1978. J Magn Reson 213(2):214–243.  https://doi.org/10.1016/j.jmr.2011.08.031CrossRefPubMedGoogle Scholar
  62. 62.
    Kolodziejski W, Klinowski J (2002) Kinetics of cross-polarization in solid-state NMR: a guide for chemists. Chem Rev 102(3):613–628CrossRefPubMedGoogle Scholar
  63. 63.
    Pines A, Gibby MG, Waugh JS (1973) Proton-enhanced NMR of dilute spins in solids. J Chem Phys 59(2):569–590.  https://doi.org/10.1063/1.1680061CrossRefGoogle Scholar
  64. 64.
    Bloembergen N (1949) On the interaction of nuclear spins in a crystalline lattice. Physica 15(3–4):386–426.  https://doi.org/10.1016/0031-8914(49)90114-7CrossRefGoogle Scholar
  65. 65.
    Petkova AT, Baldus M, Belenky M, Hong M, Griffin RG, Herzfeld J (2003) Backbone and side chain assignment strategies for multiply labeled membrane peptides and proteins in the solid state. J Magn Reson 160(1):1–12CrossRefPubMedGoogle Scholar
  66. 66.
    Baldus M, Petkova AT, Herzfeld J, Griffin RG (1998) Cross polarization in the tilted frame: assignment and spectral simplification in heteronuclear spin systems. Mol Phys 95(6):1197–1207.  https://doi.org/10.1080/002689798166215CrossRefGoogle Scholar
  67. 67.
    Takegoshi K, Nakamura S, Terao T (2001) C-13-H-1 dipolar-assisted rotational resonance in magic-angle spinning NMR. Chem Phys Lett 344(5–6):631–637.  https://doi.org/10.1016/S0009-2614(01)00791-6CrossRefGoogle Scholar
  68. 68.
    Takegoshi K, Nakamura S, Terao T (2003) C-13-H-1 dipolar-driven C-13-C-13 recoupling without C-13 rf irradiation in nuclear magnetic resonance of rotating solids. J Chem Phys 118(5):2325–2341.  https://doi.org/10.1063/1.1534105CrossRefGoogle Scholar
  69. 69.
    Hing AW, Vega S, Schaefer J (1992) Transferred-echo double-resonance NMR. J Magnetic Reson 96(1):205–209.  https://doi.org/10.1016/0022-2364(92)90305-QCrossRefGoogle Scholar
  70. 70.
    Mcdowell LM, Klug CA, Studelska DR, Tasaki K, Beusen DD, Mckay RA, Schaefer J (1995) Applications of REDOR NMR-spectroscopy. J Cell Biochem:18–18Google Scholar
  71. 71.
    Michal CA, Jelinski LW (1997) REDOR 3D: Heteronuclear distance measurements in uniformly labeled and natural abundance solids. J Am Chem Soc 119(38):9059–9060.  https://doi.org/10.1021/ja9711730CrossRefGoogle Scholar
  72. 72.
    Jaroniec CP, Filip C, Griffin RG (2002) 3D TEDOR NMR experiments for the simultaneous measurement of multiple carbon-nitrogen distances in uniformly (13)C,(15)N-labeled solids. J Am Chem Soc 124(36):10728–10742.  https://doi.org/10.1021/ja026385yCrossRefPubMedGoogle Scholar
  73. 73.
    Liang B, Tamm LK (2016) NMR as a tool to investigate the structure, dynamics and function of membrane proteins. Nat Struct Mol Biol 23(6):468–474.  https://doi.org/10.1038/nsmb.3226CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Pervushin K, Riek R, Wider G, Wuthrich K (1997) Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci U S A 94(23):12366–12371.  https://doi.org/10.1073/pnas.94.23.12366CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Wang AC, Grzesiek S, Tschudin R, Lodi PJ, Bax A (1995) Sequential backbone assignment of isotopically enriched proteins in D2O by deuterium-decoupled HA(CA)N and HA(CACO)N. J Biomol NMR 5(4):376–382CrossRefPubMedGoogle Scholar
  76. 76.
    Sattler M, Fesik SW (1996) Use of deuterium labeling in NMR: overcoming a sizeable problem. Structure 4(11):1245–1249CrossRefPubMedGoogle Scholar
  77. 77.
    Yagi H, Tsujimoto T, Yamazaki T, Yoshida M, Akutsu H (2004) Conformational change of H+-ATPase beta monomer revealed on segmental isotope labeling NMR spectroscopy. J Am Chem Soc 126(50):16632–16638.  https://doi.org/10.1021/ja045279oCrossRefPubMedGoogle Scholar
  78. 78.
    Sim DW, Lu Z, Won HS, Lee SN, Seo MD, Lee BJ, Kim JH (2017) Application of solution NMR to structural studies on alpha-helical integral membrane proteins. Molecules 22(8).  https://doi.org/10.3390/molecules22081347
  79. 79.
    Fiaux J, Bertelsen EB, Horwich AL, Wuthrich K (2004) Uniform and residue-specific 15N-labeling of proteins on a highly deuterated background. J Biomol NMR 29(3):289–297.  https://doi.org/10.1023/B:JNMR.0000032523.00554.38CrossRefPubMedGoogle Scholar
  80. 80.
    Arora A, Tamm LK (2001) Biophysical approaches to membrane protein structure determination. Curr Opin Struct Biol 11(5):540–547CrossRefPubMedGoogle Scholar
  81. 81.
    Fernandez C, Wuthrich K (2003) NMR solution structure determination of membrane proteins reconstituted in detergent micelles. FEBS Lett 555(1):144–150.  https://doi.org/10.1016/s0014-5793(03)01155-4CrossRefPubMedGoogle Scholar
  82. 82.
    Riek R, Wider G, Pervushin K, Wuthrich K (1999) Polarization transfer by cross-correlated relaxation in solution NMR with very large molecules. Proc Natl Acad Sci U S A 96(9):4918–4923CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Matzapetakis M, Turano P, Theil EC, Bertini I (2007) 13C- 13C NOESY spectra of a 480 kDa protein: solution NMR of ferritin. J Biomol NMR 38(3):237–242.  https://doi.org/10.1007/s10858-007-9163-9CrossRefPubMedGoogle Scholar
  84. 84.
    Wider G, Wuthrich K (1999) NMR spectroscopy of large molecules and multimolecular assemblies in solution. Curr Opin Struct Biol 9(5):594–601CrossRefPubMedGoogle Scholar
  85. 85.
    Kerfah R, Plevin MJ, Sounier R, Gans P, Boisbouvier J (2015) Methyl-specific isotopic labeling: a molecular tool box for solution NMR studies of large proteins. Curr Opin Struct Biol 32:113–122.  https://doi.org/10.1016/j.sbi.2015.03.009CrossRefPubMedGoogle Scholar
  86. 86.
    Huang R, Perez F, Kay LE (2017) Probing the cooperativity of Thermoplasma acidophilum proteasome core particle gating by NMR spectroscopy. Proc Natl Acad Sci U S A 114(46):E9846–E9854.  https://doi.org/10.1073/pnas.1712297114CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Grzesiek S, Bax A (1992) Correlating backbone amide and side-chain resonances in larger proteins by multiple relayed triple resonance NMR. J Am Chem Soc 114(16):6291–6293.  https://doi.org/10.1021/ja00042a003CrossRefGoogle Scholar
  88. 88.
    Grzesiek S, Bax A (1993) Amino-acid type determination in the sequential assignment procedure of uniformly C-13/N-15-enriched proteins. J Biomol NMR 3(2):185–204CrossRefPubMedGoogle Scholar
  89. 89.
    Kushlan DM, LeMaster DM (1993) Resolution and sensitivity enhancement of heteronuclear correlation for methylene resonances via 2H enrichment and decoupling. J Biomol NMR 3(6):701–708CrossRefPubMedGoogle Scholar
  90. 90.
    Yamazaki T, Lee W, Arrowsmith CH, Muhandiram DR, Kay LE (1994) A suite of triple-resonance NMR experiments for the backbone assignment of N-15, C-13, H-2 labeled proteins with high-sensitivity. J Am Chem Soc 116(26):11655–11666.  https://doi.org/10.1021/ja00105a005CrossRefGoogle Scholar
  91. 91.
    Zhu G, Kong XM, Sze KH (1999) Gradient and sensitivity enhancement of 2D TROSY with water flip-back, 3D NOESY-TROSY and TOCSY-TROSY experiments. J Biomol NMR 13(1):77–81.  https://doi.org/10.1023/A:1008398227519CrossRefPubMedGoogle Scholar
  92. 92.
    Ikura M, Kay LE, Bax A (1990) A novel approach for sequential assignment of 1H, 13C, and 15N spectra of proteins: heteronuclear triple-resonance three-dimensional NMR spectroscopy. Application to calmodulin. Biochemistry 29(19):4659–4667.  https://doi.org/10.1021/bi00471a022CrossRefPubMedGoogle Scholar
  93. 93.
    Lundstrom P, Vallurupalli P, Hansen DF, Kay LE (2009) Isotope labeling methods for studies of excited protein states by relaxation dispersion NMR spectroscopy. Nat Protoc 4(11):1641–1648.  https://doi.org/10.1038/nprot.2009.118CrossRefPubMedGoogle Scholar
  94. 94.
    Neudecker P, Lundstrom P, Kay LE (2009) Relaxation dispersion NMR spectroscopy as a tool for detailed studies of protein folding. Biophys J 96(6):2045–2054.  https://doi.org/10.1016/j.bpj.2008.12.3907CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Mittermaier A, Kay LE (2006) New tools provide new insights in NMR studies of protein dynamics. Science 312(5771):224–228.  https://doi.org/10.1126/science.1124964CrossRefPubMedGoogle Scholar
  96. 96.
    Sattler M, Schleucher J, Griesinger C (1999) Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients. Prog Nucl Mag Res Sp 34(2):93–158.  https://doi.org/10.1016/S0079-6565(98)00025-9CrossRefGoogle Scholar
  97. 97.
    Farrow NA, Zhang O, Forman-Kay JD, Kay LE (1994) A heteronuclear correlation experiment for simultaneous determination of 15N longitudinal decay and chemical exchange rates of systems in slow equilibrium. J Biomol NMR 4(5):727–734CrossRefPubMedGoogle Scholar
  98. 98.
    Li Y, Palmer AG 3rd (2009) TROSY-selected ZZ-exchange experiment for characterizing slow chemical exchange in large proteins. J Biomol NMR 45(4):357–360.  https://doi.org/10.1007/s10858-009-9385-0CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Vallurupalli P, Bouvignies G, Kay LE (2012) Studying "invisible" excited protein states in slow exchange with a major state conformation. J Am Chem Soc 134(19):8148–8161.  https://doi.org/10.1021/ja3001419CrossRefPubMedGoogle Scholar
  100. 100.
    Vallurupalli P, Sekhar A, Yuwen T, Kay LE (2017) Probing conformational dynamics in biomolecules via chemical exchange saturation transfer: a primer. J Biomol NMR 67(4):243–271.  https://doi.org/10.1007/s10858-017-0099-4CrossRefPubMedGoogle Scholar
  101. 101.
    Loria JP, Rance M, Palmer AG 3rd (1999) Transverse-relaxation-optimized (TROSY) gradient-enhanced triple-resonance NMR spectroscopy. J Magn Reson 141(1):180–184.  https://doi.org/10.1006/jmre.1999.1891CrossRefPubMedGoogle Scholar
  102. 102.
    Bibow S, Hiller S (2019) A guide to quantifying membrane protein dynamics in lipids and other native-like environments by solution-state NMR spectroscopy. FEBS J 286(9):1610–1623.  https://doi.org/10.1111/febs.14639CrossRefPubMedGoogle Scholar
  103. 103.
    Pervushin K (2000) Impact of transverse relaxation optimized spectroscopy (TROSY) on NMR as a technique in structural biology. Q Rev Biophys 33(2):161–197CrossRefPubMedGoogle Scholar
  104. 104.
    Pervushin KV, Wider G, Wuthrich K (1998) Single transition-to-single transition polarization transfer (ST2-PT) in [15N,1H]-TROSY. J Biomol NMR 12(2):345–348.  https://doi.org/10.1023/A:1008268930690CrossRefPubMedGoogle Scholar
  105. 105.
    Salzmann M, Pervushin K, Wider G, Senn H, Wuthrich K (1998) TROSY in triple-resonance experiments: new perspectives for sequential NMR assignment of large proteins. Proc Natl Acad Sci U S A 95(23):13585–13590CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Hiller S, Wider G, Etezady-Esfarjani T, Horst R, Wuthrich K (2005) Managing the solvent water polarization to obtain improved NMR spectra of large molecular structures. J Biomol NMR 32(1):61–70.  https://doi.org/10.1007/s10858-005-3070-8CrossRefPubMedGoogle Scholar
  107. 107.
    Bruschweiler R, Ernst RR (1992) Molecular-dynamics monitored by Cross-correlated Cross relaxation of spins quantized along orthogonal axes. J Chem Phys 96(3):1758–1766CrossRefGoogle Scholar
  108. 108.
    Dalvit C (1992) 1H to 15N polarization transfer via 1H chemical-shift anisotropy—1H-15N dipole-dipole cross correlation. J Magn Reson 97(3):645–650Google Scholar
  109. 109.
    Brüschweiler R, RRJTJocp E (1992) Molecular dynamics monitored by cross-correlated cross relaxation of spins quantized along orthogonal axes. 96(3):1758–1766Google Scholar
  110. 110.
    Chhabra S, Fischer P, Takeuchi K, Dubey A, Ziarek JJ, Boeszoermenyi A, Mathieu D, Bermel W, Davey NE, Wagner G, Arthanari H (2018) (15)N detection harnesses the slow relaxation property of nitrogen: delivering enhanced resolution for intrinsically disordered proteins. Proc Natl Acad Sci U S A 115(8):E1710–E1719.  https://doi.org/10.1073/pnas.1717560115CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Rossi P, Monneau YR, Xia Y, Ishida Y, Kalodimos CG (2019) Toolkit for NMR studies of methyl-labeled proteins. Methods Enzymol 614:107–142.  https://doi.org/10.1016/bs.mie.2018.08.036CrossRefPubMedGoogle Scholar
  112. 112.
    Kay LE, Gardner KH (1997) Solution NMR spectroscopy beyond 25 kDa. Curr Opin Struct Biol 7(5):722–731CrossRefPubMedGoogle Scholar
  113. 113.
    Gardner KH, Rosen MK, Kay LE (1997) Global folds of highly deuterated, methyl-protonated proteins by multidimensional NMR. Biochemistry 36(6):1389–1401.  https://doi.org/10.1021/bi9624806CrossRefPubMedGoogle Scholar
  114. 114.
    Velyvis A, Ruschak AM, Kay LE (2012) An economical method for production of (2)H, (13)CH3-threonine for solution NMR studies of large protein complexes: application to the 670 kDa proteasome. PLoS One 7(9):e43725.  https://doi.org/10.1371/journal.pone.0043725CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Tugarinov V, Kay LE (2005) Quantitative 13C and 2H NMR relaxation studies of the 723-residue enzyme malate synthase G reveal a dynamic binding interface. Biochemistry 44(49):15970–15977.  https://doi.org/10.1021/bi0519809CrossRefPubMedGoogle Scholar
  116. 116.
    Tugarinov V, Kay LE (2004) An isotope labeling strategy for methyl TROSY spectroscopy. J Biomol NMR 28(2):165–172.  https://doi.org/10.1023/B:JNMR.0000013824.93994.1fCrossRefPubMedGoogle Scholar
  117. 117.
    Ruschak AM, Velyvis A, Kay LE (2010) A simple strategy for (1)(3)C, (1)H labeling at the Ile-gamma2 methyl position in highly deuterated proteins. J Biomol NMR 48(3):129–135.  https://doi.org/10.1007/s10858-010-9449-1CrossRefPubMedGoogle Scholar
  118. 118.
    Ollerenshaw JE, Tugarinov V, Skrynnikov NR, Kay LE (2005) Comparison of 13CH3, 13CH2D, and 13CHD2 methyl labeling strategies in proteins. J Biomol NMR 33(1):25–41.  https://doi.org/10.1007/s10858-005-2614-2CrossRefPubMedGoogle Scholar
  119. 119.
    Azatian SB, Kaur N, Latham MP (2019) Increasing the buffering capacity of minimal media leads to higher protein yield. J Biomol NMR 73:11.  https://doi.org/10.1007/s10858-018-00222-4CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Kaur H, Lakatos A, Spadaccini R, Vogel R, Hoffmann C, Becker-Baldus J, Ouari O, Tordo P, McHaourab H, Glaubitz C (2015) The ABC exporter MsbA probed by solid state NMR - challenges and opportunities. Biol Chem 396(9–10):1135–1149.  https://doi.org/10.1515/hsz-2015-0119CrossRefPubMedGoogle Scholar
  121. 121.
    González-Romo P, Sánchez-Nieto S, MJAb G-R (1992) A modified colorimetric method for the determination of orthophosphate in the presence of high ATP concentrations. Anal Biochem 200(2):235–238CrossRefPubMedGoogle Scholar
  122. 122.
    Mandal A, Boatz JC, Wheeler TB, van der Wel PC (2017) On the use of ultracentrifugal devices for routine sample preparation in biomolecular magic-angle-spinning NMR. J Biomol NMR 67(3):165–178.  https://doi.org/10.1007/s10858-017-0089-6CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Hartmann SR, Hahn EL (1962) Nuclear double resonance in rotating frame. Phys Rev 128(5):2042.  https://doi.org/10.1103/PhysRev.128.2042CrossRefGoogle Scholar
  124. 124.
    Bräuniger T, Wormald P, Hodgkinson P (2002) Improved proton decoupling in NMR spectroscopy of crystalline solids using the S PINAL-64 sequence. In: Current developments in solid state NMR spectroscopy. Springer, Wien, pp 69–74CrossRefGoogle Scholar
  125. 125.
    Takegoshi K, Nakamura S, Terao T (2001) 13C–1H dipolar-assisted rotational resonance in magic-angle spinning NMR. Chem Phys Lett 344(5):631–637CrossRefGoogle Scholar
  126. 126.
    Liu ML, Mao XA, Ye CH, Huang H, Nicholson JK, Lindon JC (1998) Improved WATERGATE pulse sequences for solvent suppression in NMR spectroscopy. J Magn Reson 132(1):125–129.  https://doi.org/10.1006/jmre.1998.1405CrossRefGoogle Scholar
  127. 127.
    Tugarinov V, Hwang PM, Ollerenshaw JE, Kay LE (2003) Cross-correlated relaxation enhanced 1H[bond]13C NMR spectroscopy of methyl groups in very high molecular weight proteins and protein complexes. J Am Chem Soc 125(34):10420–10428.  https://doi.org/10.1021/ja030153xCrossRefPubMedGoogle Scholar
  128. 128.
    Miroux B, Walker JE (1996) Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J Mol Biol 260(3):289–298.  https://doi.org/10.1006/jmbi.1996.0399CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Angius F, Ilioaia O, Amrani A, Suisse A, Rosset L, Legrand A, Abou-Hamdan A, Uzan M, Zito F, Miroux B (2018) A novel regulation mechanism of the T7 RNA polymerase based expression system improves overproduction and folding of membrane proteins. Sci Rep 8(1):8572.  https://doi.org/10.1038/s41598-018-26668-yCrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Marley J, Lu M, Bracken C (2001) A method for efficient isotopic labeling of recombinant proteins. J Biomol NMR 20(1):71–75CrossRefPubMedGoogle Scholar
  131. 131.
    Castellani F, van Rossum B, Diehl A, Schubert M, Rehbein K, Oschkinat H (2002) Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy. Nature 420(6911):98–102.  https://doi.org/10.1038/nature01070CrossRefPubMedGoogle Scholar
  132. 132.
    Higman VA, Flinders J, Hiller M, Jehle S, Markovic S, Fiedler S, van Rossum BJ, Oschkinat H (2009) Assigning large proteins in the solid state: a MAS NMR resonance assignment strategy using selectively and extensively 13C-labelled proteins. J Biomol NMR 44(4):245–260.  https://doi.org/10.1007/s10858-009-9338-7CrossRefPubMedGoogle Scholar
  133. 133.
    Schubert M, Manolikas T, Rogowski M, Meier BH (2006) Solid-state NMR spectroscopy of 10% 13C labeled ubiquitin: spectral simplification and stereospecific assignment of isopropyl groups. J Biomol NMR 35(3):167–173.  https://doi.org/10.1007/s10858-006-9025-xCrossRefPubMedGoogle Scholar
  134. 134.
    Lacabanne D, Meier BH, Bockmann A (2018) Selective labeling and unlabeling strategies in protein solid-state NMR spectroscopy. J Biomol NMR 71(3):141–150.  https://doi.org/10.1007/s10858-017-0156-zCrossRefPubMedGoogle Scholar
  135. 135.
    Hong M, Jakes K (1999) Selective and extensive 13C labeling of a membrane protein for solid-state NMR investigations. J Biomol NMR 14(1):71–74CrossRefPubMedGoogle Scholar
  136. 136.
    Meissner A, Sorensen OW (2001) Sequential HNCACB and CBCANH protein NMR pulse sequences. J Magn Reson 151(2):328–331.  https://doi.org/10.1006/jmre.2001.2374CrossRefPubMedGoogle Scholar
  137. 137.
    Tugarinov V, Kay LE (2003) Side chain assignments of Ile delta 1 methyl groups in high molecular weight proteins: an application to a 46 ns tumbling molecule. J Am Chem Soc 125(19):5701–5706.  https://doi.org/10.1021/ja021452+CrossRefPubMedGoogle Scholar
  138. 138.
    Tugarinov V, Kay LE (2003) Ile, Leu, and Val methyl assignments of the 723-residue malate synthase G using a new labeling strategy and novel NMR methods. J Am Chem Soc 125(45):13868–13878.  https://doi.org/10.1021/ja030345sCrossRefPubMedGoogle Scholar
  139. 139.
    Tugarinov V, Choy WY, Orekhov VY, Kay LE (2005) Solution NMR-derived global fold of a monomeric 82-kDa enzyme. Proc Natl Acad Sci U S A 102(3):622–627.  https://doi.org/10.1073/pnas.0407792102CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Gelis I, Bonvin AM, Keramisanou D, Koukaki M, Gouridis G, Karamanou S, Economou A, Kalodimos CG (2007) Structural basis for signal-sequence recognition by the translocase motor SecA as determined by NMR. Cell 131(4):756–769.  https://doi.org/10.1016/j.cell.2007.09.039CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Ayala I, Sounier R, Use N, Gans P, Boisbouvier J (2009) An efficient protocol for the complete incorporation of methyl-protonated alanine in perdeuterated protein. J Biomol NMR 43(2):111–119.  https://doi.org/10.1007/s10858-008-9294-7CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Hundeep Kaur
    • 1
  • Anne Grahl
    • 1
  • Jean-Baptiste Hartmann
    • 1
  • Sebastian Hiller
    • 1
    Email author
  1. 1.BiozentrumUniversity of BaselBaselSwitzerland

Personalised recommendations