Advertisement

Purification of Membrane Proteins by Affinity Chromatography with On-Column Protease Cleavage

  • Stephan Hirschi
  • Dimitrios FotiadisEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2127)

Abstract

A protocol is described for the isolation of recombinant polyhistidine-tagged membrane proteins from overexpressing Escherichia coli cells. The gene encoding a target membrane protein is cloned into an expression plasmid and then introduced into E. coli cells for overexpression. Membranes from bacterial cells are isolated and the tagged target membrane protein is solubilized in detergent and subsequently bound to an affinity matrix. Tagged proteins are commonly eluted by an excess of a solute that competes for the binding to the matrix. Alternatively, amino acid sequence-specific proteases can be used to cleave off the affinity purification tag directly on the purification column (i.e., on-column cleavage). This selectively releases the target protein and allows subsequent elution. Importantly, this step represents an additional purification step and can significantly increase the purity of the isolated protein.

Key words

Affinity chromatography Membrane protein On-column cleavage Protease cleavage Protein affinity tag 

Notes

Acknowledgments

Financial support from the University of Bern, the Swiss National Science Foundation (grant 31003_184980), and the National Centre of Competence in Research (NCCR) Molecular Systems Engineering to Dimitrios Fotiadis is gratefully acknowledged.

References

  1. 1.
    Lacapère J-J, Pebay-Peyroula E, Neumann J-M, Etchebest C (2007) Determining membrane protein structures: still a challenge! Trends Biochem Sci 32:259–270CrossRefGoogle Scholar
  2. 2.
    von Heijne G (2007) The membrane protein universe: what’s out there and why bother? J Intern Med 261:543–557CrossRefGoogle Scholar
  3. 3.
    Santos R, Ursu O, Gaulton A et al (2017) A comprehensive map of molecular drug targets. Nat Rev Drug Discov 16:19–34CrossRefGoogle Scholar
  4. 4.
    Lin S-H, Guidotti G (2009) Purification of membrane proteins. In: Methods Enzymol, 1st edn. Elsevier, Amsterdam, pp 619–629Google Scholar
  5. 5.
    Grisshammer R (2006) Understanding recombinant expression of membrane proteins. Curr Opin Biotechnol 17:337–340CrossRefGoogle Scholar
  6. 6.
    Molloy MP, Herbert BR, Slade MB, Rabilloud T, Nouwens AS, Williams KL, Gooley AA (2000) Proteomic analysis of the Escherichia coli outer membrane. Eur J Biochem 267:2871–2881CrossRefGoogle Scholar
  7. 7.
    Assenberg R, Wan PT, Geisse S, Mayr LM (2013) Advances in recombinant protein expression for use in pharmaceutical research. Curr Opin Struct Biol 23:393–402CrossRefGoogle Scholar
  8. 8.
    Kimple ME, Brill AL, Pasker RL (2013) Overview of affinity tags for protein purification. Curr Protoc Protein Sci 73:Unit 9.9CrossRefGoogle Scholar
  9. 9.
    Waugh DS (2005) Making the most of affinity tags. Trends Biotechnol 23:316–320CrossRefGoogle Scholar
  10. 10.
    Waugh DS (2011) An overview of enzymatic reagents for the removal of affinity tags. Protein Expr Purif 80:283–293CrossRefGoogle Scholar
  11. 11.
    Boggavarapu R, Hirschi S, Harder D, Meury M, Ucurum Z, Bergeron MJ, Fotiadis D (2016) Purification of human and mammalian membrane proteins expressed in Xenopus laevis frog oocytes for structural studies. Methods Mol Biol 1432:223–242CrossRefGoogle Scholar
  12. 12.
    Bergeron MJ, Boggavarapu R, Meury M, Ucurum Z, Caron L, Isenring P, Hediger MA, Fotiadis D (2011) Frog oocytes to unveil the structure and supramolecular organization of human transport proteins. PLoS One 6:e21901CrossRefGoogle Scholar
  13. 13.
    Béja O, Spudich EN, Spudich JL, Leclerc M, DeLong EF (2001) Proteorhodopsin phototrophy in the ocean. Nature 411:786–789CrossRefGoogle Scholar
  14. 14.
    Ilgü H, Jeckelmann JM, Gachet MS, Boggavarapu R, Ucurum Z, Gertsch J, Fotiadis D (2014) Variation of the detergent-binding capacity and phospholipid content of membrane proteins when purified in different detergents. Biophys J 106:1660–1670CrossRefGoogle Scholar
  15. 15.
    Rosano GL, Ceccarelli EA (2014) Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol 5:1–17Google Scholar
  16. 16.
    Miroux B, Walker JE (1996) Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J Mol Biol 260:289–298CrossRefGoogle Scholar
  17. 17.
    Privé GG (2007) Detergents for the stabilization and crystallization of membrane proteins. Methods 41:388–397Google Scholar
  18. 18.
    Sonoda Y, Newstead S, Hu N-J et al (2011) Benchmarking membrane protein detergent stability for improving throughput of high-resolution X-ray structures. Structure 19:17–25CrossRefGoogle Scholar
  19. 19.
    Chen X, Zaro JL, Shen W-C (2013) Fusion protein linkers: Property, design and functionality. Adv Drug Deliv Rev 65:1357–1369CrossRefGoogle Scholar
  20. 20.
    Kenig M, Peternel Š, Gaberc-Porekar V, Menart V (2006) Influence of the protein oligomericity on final yield after affinity tag removal in purification of recombinant proteins. J Chromatogr A 1101:293–306CrossRefGoogle Scholar
  21. 21.
    Rath A, Glibowicka M, Nadeau VG, Chen G, Deber CM (2009) Detergent binding explains anomalous SDS-PAGE migration of membrane proteins. Proc Natl Acad Sci U S A 106:1760–1765CrossRefGoogle Scholar
  22. 22.
    Harder D, Hirschi S, Ucurum Z, Goers R, Meier W, Müller DJ, Fotiadis D (2016) Engineering a chemical switch into the light-driven proton pump proteorhodopsin by cysteine mutagenesis and thiol modification. Angew Chemie Int Ed 55:8846–8849CrossRefGoogle Scholar
  23. 23.
    Hirschi S, Fischer N, Kalbermatter D, Laskowski PR, Ucurum Z, Müller DJ, Fotiadis D (2019) Design and assembly of a chemically switchable and fluorescently traceable light-driven proton pump system for bionanotechnological applications. Sci Rep 9:1046CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Institute of Biochemistry and Molecular Medicine, University of BernBernSwitzerland

Personalised recommendations