Advertisement

Cell Tracking pp 155-166 | Cite as

Gold Nanoparticles as a Computed Tomography Marker for Stem Cell Tracking

  • Md Nafiujjaman
  • Taeho KimEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2126)

Abstract

Stem cell tracking is an essential prerequisite for effective stem cell therapy. Computed tomography (CT) imaging technique is an emerging quantitative tool to detect real time distribution of transplanted cells. Most of CT labels based on the high atomic number (Z) materials have concern over biocompatibility. The present book chapter describes a protocol for the use of biocompatible gold nanoparticles as a CT marker for efficient labeling of mesenchymal stem cells (MSCs) and subsequent cell tracking in rodent models.

Key words

Gold nanoparticles Stem cells CT Cell tracking Cell labeling In vivo 

References

  1. 1.
    Nelson TJ, Behfar A, Yamada S, Martinez-Fernandez A, Terzic A (2009) Stem cell platforms for regenerative medicine. Clin Transl Sci 2(3):222–227CrossRefGoogle Scholar
  2. 2.
    Bagno L, Hatzistergos KE, Balkan W, Hare JM (2018) Mesenchymal stem cell-based therapy for cardiovascular disease: progress and challenges. Mol Ther 26:7CrossRefGoogle Scholar
  3. 3.
    Rossi DJ, Jamieson CH, Weissman IL (2008) Stems cells and the pathways to aging and cancer. Cell 132(4):681–696CrossRefGoogle Scholar
  4. 4.
    Goldman S (2005) Stem and progenitor cell-based therapy of the human central nervous system. Nat Biotechnol 23(7):862–871CrossRefGoogle Scholar
  5. 5.
    Kim J, Park JS (2017) Usage of human mesenchymal stem cells in cell-based therapy: advantages and disadvantages. Dev Reprod 21(1):1–10CrossRefGoogle Scholar
  6. 6.
    Reagan MR, Seib FP, McMillin DW, Sage EK, Mitsiades CS, Janes SM et al (2012) Stem cell implants for cancer therapy: TRAIL-expressing mesenchymal stem cells target cancer cells in situ. J Breast Cancer 15(3):273–282CrossRefGoogle Scholar
  7. 7.
    Hu YL, Huang B, Zhang TY, Miao PH, Tang GP, Tabata Y et al (2012) Mesenchymal stem cells as a novel carrier for targeted delivery of gene in cancer therapy based on nonviral transfection. Mol Pharm 9(9):2698–2709CrossRefGoogle Scholar
  8. 8.
    Roger M, Clavreul A, Venier-Julienne MC, Passirani C, Sindji L, Schiller P et al (2010) Mesenchymal stem cells as cellular vehicles for delivery of nanoparticles to brain tumors. Biomaterials 31(32):8393–8401CrossRefGoogle Scholar
  9. 9.
    Kang S, Bhang SH, Hwang S, Yoon JK, Song J, Jang HK et al (2015) Mesenchymal stem cells aggregate and deliver gold nanoparticles to tumors for photothermal therapy. ACS Nano 9(10):9678–9690CrossRefGoogle Scholar
  10. 10.
    Sabapathy V, Mentam J, Jacob PM, Kumar S (2015) Noninvasive optical imaging and in vivo cell tracking of indocyanine green labeled human stem cells transplanted at superficial or in-depth tissue of SCID mice. Stem Cells Int 2015:606415PubMedPubMedCentralGoogle Scholar
  11. 11.
    England CG, Ehlerding EB, Cai W (2016) Imaging the biodistribution and performance of transplanted stem cells with PET. J Nucl Med 57(9):1331–1332CrossRefGoogle Scholar
  12. 12.
    Kim T, Lemaster JE, Chen F, Li J, Jokerst JV (2017) Photoacoustic imaging of human mesenchymal stem cells labeled with prussian blue-poly(l-lysine) nanocomplexes. ACS Nano 11(9):9022–9032CrossRefGoogle Scholar
  13. 13.
    Rosenberg JT, Yuan X, Grant S, Teng Ma T (2016) Tracking mesenchymal stem cells using magnetic resonance imaging. Brain Circ 2(3):108–113CrossRefGoogle Scholar
  14. 14.
    Kim J, Chhour P, Hsu J, Litt HI, Ferrari VA, Popovtzer R et al (2017) Use of nanoparticle contrast agents for cell tracking with computed tomography. Bioconjug Chem 28(6):1581–1597CrossRefGoogle Scholar
  15. 15.
    Meir R, Popovtzer R (2018) Cell tracking using gold nanoparticles and computed tomography imaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol 10:e1480CrossRefGoogle Scholar
  16. 16.
    Rabin O, Manuel Perez J, Grimm J, Wojtkiewicz G, Weissleder R (2006) An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. Nat Mater 5:118–122CrossRefGoogle Scholar
  17. 17.
    Liu Y, Ai K, Liu J, Yuan Q, He Y, Lu L (2012) A high-performance ytterbium-based nanoparticulate contrast agent for in vivo X-ray computed tomography imaging. Angew Chem Int Ed 51:1437–1442CrossRefGoogle Scholar
  18. 18.
    Firouzi M, Poursalehi R, Delavari HH, Saba F, Oghabian MA (2017) Chitosan coated tungsten trioxide nanoparticles as a contrast agent for X-ray computed tomography. Int J Biol Macromol 98:479–485CrossRefGoogle Scholar
  19. 19.
    Kim T, Lee N, Arifin DR, Shats I, Janowski M, Walczak P et al (2017) In vivo micro-CT imaging of human mesenchymal stem cells labeled with gold-poly-l-lysine nanocomplexes. Adv Funct Mater 27(3):1604213CrossRefGoogle Scholar
  20. 20.
    Jackson PA, Rahman WN, Wong CJ, Ackerly T, Geso M (2010) Potential dependent superiority of gold nanoparticles in comparison to iodinated contrast agents. Eur J Radiol 75(1):104–109CrossRefGoogle Scholar
  21. 21.
    Xu C, Tung GA, Sun S (2008) Size and concentration effect of gold nanoparticles on X-ray attenuation as measured on computed tomography. Chem Mater 20(13):4167–4169CrossRefGoogle Scholar
  22. 22.
    Meir R, Shamalov K, Betzer O, Motiei M, Horovitz-Fried M, Yehuda R et al (2015) Nanomedicine for cancer immunotherapy: tracking cancer-specific T-cells in vivo with gold nanoparticles and CT imaging. ACS Nano 9(6):6363–6372CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Biomedical Engineering, Institute for Quantitative Health Science and EngineeringMichigan State UniversityEast LansingUSA

Personalised recommendations