Advertisement

Complete Genome Sequencing of Influenza A Viruses Using Next-Generation Sequencing

  • Dong-Hun LeeEmail author
Protocol
  • 148 Downloads
Part of the Methods in Molecular Biology book series (MIMB, volume 2123)

Abstract

Recently, chain termination sequencing methods have been replaced by more efficient next-generation sequencing (NGS) methods. For influenza A, NGS allows for deep sequencing to characterize virus populations, efficient complete genome sequencing, and a non-sequence-dependent method to identify viral variants. There are numerous approaches to preparing samples for NGS and subsequent data processing methods that can be applied to influenza A sequencing. This chapter provides a brief overview of the process of NGS for influenza A and some useful bioinformatics tools for developing an NGS workflow for influenza A viruses.

Key words

Next-generation sequencing Influenza virus Genome assembly Bioinformatics 

References

  1. 1.
    Zhou B, Donnelly ME, Scholes DT, St George K, Hatta M, Kawaoka Y, Wentworth DE (2009) Single-reaction genomic amplification accelerates sequencing and vaccine production for classical and Swine origin human influenza a viruses. J Virol 83(19):10309–10313.  https://doi.org/10.1128/JVI.01109-09CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Mena I, Nelson MI, Quezada-Monroy F, Dutta J, Cortes-Fernandez R, Lara-Puente JH, Castro-Peralta F, Cunha LF, Trovao NS, Lozano-Dubernard B, Rambaut A, van Bakel H, Garcia-Sastre A (2016) Origins of the 2009 H1N1 influenza pandemic in swine in Mexico. elife 5.  https://doi.org/10.7554/eLife.16777
  3. 3.
    Yamashita A, Sekizuka T, Kuroda M (2016) VirusTAP: viral genome-targeted assembly pipeline. Front Microbiol 7:32.  https://doi.org/10.3389/fmicb.2016.00032CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Briand FX, Henry A, Massin P, Jestin V (2012) Complete genome sequence of a novel avian paramyxovirus. J Virol 86(14):7710.  https://doi.org/10.1128/JVI.00946-12CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Joshi NA FJ (2011) Sickle: a sliding-window, adaptive, quality-based trimming tool for FastQ files (Version 1.33) [Software]. https://github.com/najoshi/sickle
  6. 6.
    Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120.  https://doi.org/10.1093/bioinformatics/btu170CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Orton RJ, Gu Q, Hughes J, Maabar M, Modha S, Vattipally SB, Wilkie GS, Davison AJ (2016) Bioinformatics tools for analysing viral genomic data. Rev Sci Tech 35(1):271–285.  https://doi.org/10.20506/rst.35.1.2432CrossRefPubMedGoogle Scholar
  8. 8.
    Li Z, Chen Y, Mu D, Yuan J, Shi Y, Zhang H, Gan J, Li N, Hu X, Liu B, Yang B, Fan W (2012) Comparison of the two major classes of assembly algorithms: overlap-layout-consensus and de-bruijn-graph. Brief Funct Genomics 11(1):25–37.  https://doi.org/10.1093/bfgp/elr035CrossRefPubMedGoogle Scholar
  9. 9.
    Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19(5):455–477.  https://doi.org/10.1089/cmb.2012.0021CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Zerbino DR (2010) Using the Velvet de novo assembler for short-read sequencing technologies. Curr Protoc Bioinformatics 11:15.  https://doi.org/10.1002/0471250953.bi1105s31CrossRefGoogle Scholar
  11. 11.
    Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, MacManes MD, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, Westerman R, William T, Dewey CN, Henschel R, LeDuc RD, Friedman N, Regev A (2013) De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc 8(8):1494–1512.  https://doi.org/10.1038/nprot.2013.084CrossRefPubMedGoogle Scholar
  12. 12.
    Li H, Homer N (2010) A survey of sequence alignment algorithms for next-generation sequencing. Brief Bioinform 11(5):473–483.  https://doi.org/10.1093/bib/bbq015CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Keel BN, Snelling WM (2018) Comparison of Burrows-Wheeler transform-based mapping algorithms used in high-throughput whole-genome sequencing: application to illumina data for livestock genomes. Front Genet 9:35.  https://doi.org/10.3389/fgene.2018.00035CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357–359.  https://doi.org/10.1038/nmeth.1923CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25(14):1754–1760.  https://doi.org/10.1093/bioinformatics/btp324CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26(5):589–595.  https://doi.org/10.1093/bioinformatics/btp698CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Genome Project Data Processing S (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079.  https://doi.org/10.1093/bioinformatics/btp352CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP (2011) Integrative genomics viewer. Nat Biotechnol 29(1):24–26.  https://doi.org/10.1038/nbt.1754CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Thorvaldsdottir H, Robinson JT, Mesirov JP (2013) Integrative genomics viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14(2):178–192.  https://doi.org/10.1093/bib/bbs017CrossRefPubMedGoogle Scholar
  20. 20.
    Milne I, Stephen G, Bayer M, Cock PJ, Pritchard L, Cardle L, Shaw PD, Marshall D (2013) Using tablet for visual exploration of second-generation sequencing data. Brief Bioinform 14(2):193–202.  https://doi.org/10.1093/bib/bbs012CrossRefPubMedGoogle Scholar
  21. 21.
    Shepard SS, Meno S, Bahl J, Wilson MM, Barnes J, Neuhaus E (2016) Viral deep sequencing needs an adaptive approach: IRMA, the iterative refinement meta-assembler. BMC Genomics 17:708.  https://doi.org/10.1186/s12864-016-3030-6CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply. 2020

Authors and Affiliations

  1. 1.Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural ResourcesThe University of ConnecticutStorrsUSA

Personalised recommendations