Advertisement

Improving MHC-I Ligand Identification by Incorporating Targeted Searches of Mass Spectrometry Data

  • Prathyusha Konda
  • J. Patrick Murphy
  • Shashi GujarEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2120)

Abstract

Effective immunotherapies rely on specific activation of immune cells. Class I major histocompatibility complex (MHC-I) bound peptide ligands play a major role in dictating the specificity and activation of CD8+ T cells and hence are important in developing T cell-based immunotherapies. Mass spectrometry-based approaches are most commonly used for identifying these MHC-bound peptides, wherein the MS/MS spectra are compared against a reference proteome database. Unfortunately, the effectiveness of matching the immunopeptide MS/MS spectra to a reference proteome database is hindered by inflated search spaces attributed to a lack of enzyme restriction in searches. These large search spaces limit the efficiency with which MHC-I peptides are identified. Here, we describe the implementation of a targeted database search approach and accompanying tool, SpectMHC, that is based on a priori-predicted MHC-I peptides. We have previously shown that this targeted search strategy improved peptide identifications for both mouse and human MHC ligands by greater than two-fold and is superior to traditional “no enzyme” search of reference proteomes (Murphy et al. J Res Proteome 16:1806–1816, 2017).

Key words

Mass spectrometry Bioinformatics MHC ligandome 

Notes

Acknowledgments

We gratefully acknowledge Dr. Steven Gygi (Department of Cell Biology, Harvard Medical School), Dr. Stefan Stevanovic, Dr. Dan Kowalewski, and Dr. Heiko Schuster (Department of Immunology, Institute for Cell Biology, University of Tubingen) for helpful discussions in devising the targeted database search approach. We also acknowledge financial support from the Canadian Institutes of Health Research (CIHR), Canadian Cancer Society Research Institute (CCSRI), the Beatrice Hunter Cancer Research Institute (BHCRI), and the Dalhousie Medical Research Foundation (DMRF).

References

  1. 1.
    Rock KL, Reits E, Neefjes J (2016) Present yourself! By MHC class I and MHC class II molecules. Trends Immunol 37(11):724–737CrossRefGoogle Scholar
  2. 2.
    Blum JS, Wearsch PA, Cresswell P (2013) Pathways of antigen processing. Annu Rev Immunol 31:443–473CrossRefGoogle Scholar
  3. 3.
    Caron E, Kowalewski DJ, Koh CC et al (2015) Analysis of major histocompatibility complex (MHC) immunopeptidomes using mass spectrometry. Mol Cell Proteomics 14(12):3105–3117CrossRefGoogle Scholar
  4. 4.
    Kowalewski DJ, Schuster H, Backert L et al (2015) HLA ligandome analysis identifies the underlying specificities of spontaneous antileukemia immune responses in chronic lymphocytic leukemia. Proc Natl Acad Sci 112(2):E166–E175CrossRefGoogle Scholar
  5. 5.
    Noble WS (2015) Mass spectrometrists should search only for peptides they care about. Nat Methods 12(7):605–608CrossRefGoogle Scholar
  6. 6.
    Frewen WE, Merrihew GE, Wu CC et al (2006) Analysis of peptide MS/MS spectra from large-scale proteomics experiments using spectrum libraries. Anal Chem 78:5678–5684CrossRefGoogle Scholar
  7. 7.
    Andreatta M, Nielsen M (2015) Gapped sequence alignment using artificial neural networks: application to the MHC class I system. Bioinformatics 32(4):511–517CrossRefGoogle Scholar
  8. 8.
    Jurtz V, Paul S, Andreatta M et al (2017) NetMHCpan-4.0: improved peptide–MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data. J Immunol 199(9):3360–3368CrossRefGoogle Scholar
  9. 9.
    Nielsen M, Lundegaard C, Worning P et al (2003) Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci 12:1007–1017CrossRefGoogle Scholar
  10. 10.
    Murphy JP, Konda P, Kowalewski DJ et al (2017) MHC-I ligand discovery using targeted database searches of mass spectrometry data: implications for T-cell immunotherapies. J Proteome Res 16:1806–1816CrossRefGoogle Scholar
  11. 11.
    Scholtalbers J, Boegel S, Bukur T et al (2015) TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression. Genome Med 7(1):118CrossRefGoogle Scholar
  12. 12.
    Boegel S, Scholtalbers J, Löwer M et al (2015) In silico HLA typing using standard RNA-Seq sequence reads. Methods Mol Biol 1310:247–258CrossRefGoogle Scholar
  13. 13.
    Huang Y, Yang J, Ying D et al (2015) HLAreporter: a tool for HLA typing from next generation sequencing data. Genome Med 7(1):25CrossRefGoogle Scholar
  14. 14.
    Warren RL, Choe G, Freeman DJ et al (2012) Derivation of HLA types from shotgun sequence datasets. Genome Med 4(12):95CrossRefGoogle Scholar
  15. 15.
    Elias JE, Gygi SP (2007) Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods 4(3):207–214CrossRefGoogle Scholar
  16. 16.
    Bilich T, Nelde A, Bichmann L et al (2019) The HLA ligandome landscape of chronic myeloid leukemia delineates novel T-cell epitopes for immunotherapy. Blood 133(6):550–565CrossRefGoogle Scholar
  17. 17.
    Smart AC, Margolis CA, Pimentel H et al (2018) Intron retention is a source of neoepitopes in cancer. Nat Biotechnol 36(11):1056–1058CrossRefGoogle Scholar
  18. 18.
    Laumont CM, Vincent K, Hesnard L et al (2018) Noncoding regions are the main source of targetable tumor-specific antigens. Sci Transl Med 10(470):eaau5516CrossRefGoogle Scholar
  19. 19.
    Yadav M, Jhunjhunwala S, Phung QT et al (2014) Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature 515(7528):572–576CrossRefGoogle Scholar
  20. 20.
    Sheynkman GM, Shortreed MR, Cesnik AJ et al (2016) Proteogenomics: integrating next-generation sequencing and mass spectrometry to characterize human proteomic variation. Annu Rev Anal Chem 9:521–545CrossRefGoogle Scholar
  21. 21.
    Khodadoust MS, Olsson N, Wagar LE et al (2017) Antigen presentation profiling reveals recognition of lymphoma immunoglobulin neoantigens. Nature 543(7647):723CrossRefGoogle Scholar
  22. 22.
    Wen J, Tang WW, Sheets N et al (2017) Identification of Zika virus epitopes reveals immunodominant and protective roles for dengue virus cross-reactive CD8+ T cells. Nat Microbiol 2(6):17036CrossRefGoogle Scholar
  23. 23.
    Hansen SG, Wu HL, Burwitz BJ et al (2016) Broadly targeted CD8+ T cell responses restricted by major histocompatibility complex E. Science 351(6274):714–720CrossRefGoogle Scholar
  24. 24.
    Thiele F, Tao S, Zhang Y et al (2015) Modified vaccinia virus Ankara-infected dendritic cells present CD4+ T-cell epitopes by endogenous major histocompatibility complex class II presentation pathways. J Virol 89(5):2698–2709CrossRefGoogle Scholar
  25. 25.
    Liepe J, Marino F, Sidney J et al (2016) A large fraction of HLA class I ligands are proteasome-generated spliced peptides. Science 354(6310):354–358CrossRefGoogle Scholar
  26. 26.
    Nagarajan NA, De Verteuil DA, Sriranganadane D et al (2016) ERAAP shapes the peptidome associated with classical and nonclassical MHC class I molecules. J Immunol 197(4):1035–1043CrossRefGoogle Scholar
  27. 27.
    Laumont CM, Daouda T, Laverdure JP et al (2016) Global proteogenomic analysis of human MHC class I-associated peptides derived from non-canonical reading frames. Nat Commun 5(7):10238CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Prathyusha Konda
    • 1
  • J. Patrick Murphy
    • 2
  • Shashi Gujar
    • 1
    • 2
    • 3
    • 4
    Email author
  1. 1.Department of Microbiology and ImmunologyDalhousie UniversityHalifaxCanada
  2. 2.Department of PathologyDalhousie UniversityHalifaxCanada
  3. 3.Department of BiologyDalhousie UniversityHalifaxCanada
  4. 4.Beatrice Hunter Cancer Research InstituteHalifaxCanada

Personalised recommendations