Formulation and Characterization of Antithrombin Perfluorocarbon Nanoparticles

  • Alexander J. Wilson
  • Qingyu Zhou
  • Ian Vargas
  • Rohun Palekar
  • Ryan Grabau
  • Hua Pan
  • Samuel A. WicklineEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 2118)


Thrombin, a major protein involved in the clotting cascade by the conversion of inactive fibrinogen to fibrin, plays a crucial role in the development of thrombosis. Antithrombin nanoparticles enable site-specific anticoagulation without increasing bleeding risk. Here we outline the process of making and the characterization of bivalirudin and d-phenylalanyl-l-prolyl-l-arginyl-chloromethyl ketone (PPACK) nanoparticles. Additionally, the characterization of these nanoparticles, including particle size, zeta potential, and quantification of PPACK/bivalirudin loading, is also described.

Key words

Perfluorocarbon nanoparticles Thrombin PPACK Bivalirudin Anticoagulation 



The manuscript was edited by Enrico Ferrari and Mikhail Soloviev.


  1. 1.
    Fareed J, Iqbal O, Cunanan J et al (2008) Changing trends in anti-coagulant therapies are heparins and oral anti-coagulants challenged? Int Angiol 27:176–192PubMedGoogle Scholar
  2. 2.
    Palekar RU, Jallouk AP, Myerson JW et al (2016) Inhibition of thrombin with PPACK-nanoparticles restores disrupted endothelial barriers and attenuates thrombotic risk in experimental atherosclerosis. Arterioscler Thromb Vasc Biol 36:446–455CrossRefGoogle Scholar
  3. 3.
    Myerson J, He L, Lanza G et al (2011) Thrombin-inhibiting perfluorocarbon nanoparticles provide a novel strategy for the treatment and magnetic resonance imaging of acute thrombosis. J Thromb Haemost 9:1292–1300CrossRefGoogle Scholar
  4. 4.
    Chen J, Vemuri C, Palekar RU et al (2015) Antithrombin nanoparticles improve kidney reperfusion and protect kidney function after ischemia-reperfusion injury. Am J Physiol Renal Physiol 308:F765–F773CrossRefGoogle Scholar
  5. 5.
    Myerson JW, He L, Allen JS et al (2014) Thrombin-inhibiting nanoparticles rapidly constitute versatile and detectable anticlotting surfaces. Nanotechnology 25:395101CrossRefGoogle Scholar
  6. 6.
    Srivastava S, Goswami LN, Dikshit DK (2005) Progress in the design of low molecular weight thrombin inhibitors. Med Res Rev 25:66–92CrossRefGoogle Scholar
  7. 7.
    Weitz JI, Buller HR (2002) Direct thrombin inhibitors in acute coronary syndromes: present and future. Circulation 105:1004–1011CrossRefGoogle Scholar
  8. 8.
    Zhang H, Zhang L, Myerson J et al (2011) Quantifying the evolution of vascular barrier disruption in advanced atherosclerosis with semipermeant nanoparticle contrast agents. PLoS One 6:e26385CrossRefGoogle Scholar
  9. 9.
    Chen J, Pan H, Lanza GM et al (2013) Perfluorocarbon nanoparticles for physiological and molecular imaging and therapy. Adv Chronic Kidney Dis 20:466–478CrossRefGoogle Scholar
  10. 10.
    Hu L, Chen J, Yang X et al (2014) Assessing intrarenal nonperfusion and vascular leakage in acute kidney injury with multinuclear 1H/19F MRI and perfluorocarbon nanoparticles. Magn Reson Med 71:2186–2196CrossRefGoogle Scholar
  11. 11.
    Kaneda MM, Caruthers S, Lanza GM et al (2009) Perfluorocarbon nanoemulsions for quantitative molecular imaging and targeted therapeutics. Ann Biomed Eng 37:1922–1933CrossRefGoogle Scholar
  12. 12.
    Moore JK, Chen J, Pan H et al (2018) Quantification of vascular damage in acute kidney injury with fluorine magnetic resonance imaging and spectroscopy. Magn Reson Med 79:3144–3153CrossRefGoogle Scholar
  13. 13.
    Morawski AM, Winter PM, Yu X et al (2004) Quantitative “magnetic resonance immunohistochemistry” with ligand-targeted 19F nanoparticles. Magn Reson Med 52:1255–1262CrossRefGoogle Scholar
  14. 14.
    Neubauer AM, Sim H, Winter PM et al (2008) Nanoparticle pharmacokinetic profiling in vivo using magnetic resonance imaging. Magn Reson Med 60:1353–1361CrossRefGoogle Scholar
  15. 15.
    Palekar RU, Jallouk AP, Goette MJ et al (2015) Quantifying progression and regression of thrombotic risk in experimental atherosclerosis. FASEB J 29:3100–3109CrossRefGoogle Scholar
  16. 16.
    Wickline SA, Mason RP, Caruthers SD et al (2010) Fluorocarbon agents for multimodal molecular imaging and targeted therapeutics. In: Weissleder R, Ross BD, Rehemtulla A, Gambhir SS (eds) Molecular imaging: principles and practice. Peoples Medical Publishing House, BeijingGoogle Scholar
  17. 17.
    Waters EA, Chen J, Allen JS et al (2008) Detection and quantification of angiogenesis in experimental valve disease with integrin-targeted nanoparticles and 19-fluorine MRI/MRS. J Cardiovasc Magn Reson 10:43CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Alexander J. Wilson
    • 1
  • Qingyu Zhou
    • 2
  • Ian Vargas
    • 1
  • Rohun Palekar
    • 3
  • Ryan Grabau
    • 1
  • Hua Pan
    • 1
  • Samuel A. Wickline
    • 1
    Email author
  1. 1.The USF Health Heart InstituteUniversity of South FloridaTampaUSA
  2. 2.College of PharmacyUniversity of South FloridaTampaUSA
  3. 3.Department of Biomedical EngineeringWashington University in St. LouisSt. LouisUSA

Personalised recommendations