Advertisement

Combining Nanoparticles with Colloidal Bubbles: A Short Review

  • Ekaterina Litau
Protocol
  • 162 Downloads
Part of the Methods in Molecular Biology book series (MIMB, volume 2118)

Abstract

Ultrasound and magneto-responsive nanosized drug delivery systems have been designed as novel carriers for controlled release. Colloidal bubbles (CBs) could be designed to incorporate different materials, such as protein, lipid, polymer, surfactants, and even nanoparticles in their shell, which makes them suitable for a wide range of drug delivery applications. The interior of CBs may be filled with different gases, which is essential for conferring the characteristics of an ultrasounds contrasting agent. Manipulating the core of CBs enhances features such as stability and duration of the echogenic effect. Thus CBs derivatized with nanoparticles combine functional properties of CBs and NPs to yield a versatile theranostics platform technology.

Key words

Colloidal bubbles Nanoparticles Theranostics Contrast reagents Imaging Drug delivery 

Notes

Acknowledgments

The manuscript was edited by Enrico Ferrari and Mikhail Soloviev.

References

  1. 1.
    Cochran MC, Eisenbrey J, Ouma RO et al (2011) Doxorubicin and paclitaxel loaded microbubbles for ultrasound triggered drug delivery. Int J Pharm 414:161–170PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Chen PY, Yeh CK, Hsu PH et al (2017) Drug-carrying microbubbles as a theranostic tool in convection-enhanced delivery for brain tumor therapy. Oncotarget 8:42359–42371PubMedPubMedCentralGoogle Scholar
  3. 3.
    Chong WK, Papadopoulou V, Dayton PA (2018) Imaging with ultrasound contrast agents: current status and future. Abdom Radiol (NY) 43:762–772CrossRefGoogle Scholar
  4. 4.
    Sennoga CA, Kanbar E, Auboire L et al (2017) Microbubble-mediated ultrasound drug-delivery and therapeutic monitoring. Expert Opin Drug Deliv 14:1031–1043PubMedCrossRefGoogle Scholar
  5. 5.
    Perera RH, Wu H, Peiris P et al (2017) Improving performance of nano-scale ultrasound contrast agents using N,N diethylacrylamide stabilization. Nanomedicine 13:59–67PubMedCrossRefGoogle Scholar
  6. 6.
    Krupka TM, Solorio L, Wilson RE et al (2010) Formulation and characterization of echogenic lipid–pluronic nanobubbles. Mol Pharm 7:49–59PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Faez T, Emmer M, Kooiman K et al (2013) 20 years of ultra-sound contrast agent modeling. IEEE Trans Ultrason Ferroelectr Freq Control 60:7–20PubMedCrossRefGoogle Scholar
  8. 8.
    Chomas JE, Dayton P, May D et al (2001) Threshold of fragmentation for ultrasonic contrast agents. J Biomed Opt 6:141–150PubMedCrossRefGoogle Scholar
  9. 9.
    van der Meer SM, Dollet B, Voormolen MM et al (2007) Microbubble spectroscopy of ultrasound contrast agents. J Acoust Soc Am 121:648–656PubMedCrossRefGoogle Scholar
  10. 10.
    Hoff L, Sontum PC, Hovem JM (2000) Oscillations of polymeric microbubbles: effect of the encapsulating shell. J Acoust Soc Am 107:2272–2280PubMedCrossRefGoogle Scholar
  11. 11.
    Lindner JR, Song J, Jayaweera AR et al (2002) Microvascular rheology of definity microbubbles after intra-arterial and intravenous administration. J Am Soc Echocardiogr 15:396–403PubMedCrossRefGoogle Scholar
  12. 12.
    Sirsi S, Borden M (2009) Microbubble compositions, properties and biomedical applications. Bubble Sci Eng Technol 1:3–17PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Boissenot T, Bordat A, Fattal E et al (2016) Ultrasound-triggered drug delivery for cancer treatment using drug delivery systems: from theoretical considerations to practical applications. J Control Release 241:144–163PubMedCrossRefGoogle Scholar
  14. 14.
    Memoli G, Baxter KO, Jones HG et al (2018) Acoustofluidic measurements on polymer-coated microbubbles: primary and secondary Bjerknes forces. Micromachines (Basel) 9:404CrossRefGoogle Scholar
  15. 15.
    Hamano N, Kamoshida S, Kikkawa Y et al (2019) Development of antibody-modified Nanobubbles using fc-region-binding polypeptides for ultrasound imaging. Pharmaceutics 11:E283PubMedCrossRefGoogle Scholar
  16. 16.
    Li B, Aid-Launais R, Labour MN et al (2019) Functionalized polymer microbubbles as new molecular ultrasound contrast agent to target P-selectin in thrombus. Biomaterials 194:139–150PubMedCrossRefGoogle Scholar
  17. 17.
    Hu J, Zong Y, Li J et al (2016) In vitro and in vivo evaluation of targeted Sunitinib-loaded polymer microbubbles against proliferation of renal cell carcinoma. J Ultrasound Med 35:589–597PubMedCrossRefGoogle Scholar
  18. 18.
    Shen S, Li Y, Xiao Y et al (2018) Folate-conjugated nanobubbles selectively target and kill cancer cells via ultrasound-triggered intracellular explosion. Biomaterials 181:293–306PubMedCrossRefGoogle Scholar
  19. 19.
    Zhu L, Wang L, Liu Y et al (2018) CAIX aptamer-functionalized targeted nanobubbles for ultrasound molecular imaging of various tumors. Int J Nanomedicine 13:6481–6495PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Shen J, Zhuo N, Xu S et al (2018) Resveratrol delivery by ultrasound-mediated nanobubbles targeting nucleus pulposus cells. Nanomedicine (Lond) 13:1433–1446CrossRefGoogle Scholar
  21. 21.
    Price RJ, Skyba DM, Kaul S et al (1998) Delivery of colloidal, particles and red blood cells to tissue through microvessel ruptures created by targeted microbubble destruction with ultrasound. Circulation 98:1264–1267PubMedCrossRefGoogle Scholar
  22. 22.
    Naldini L (2015) Gene therapy returns to Centre stage. Nature 526:351–360PubMedCrossRefGoogle Scholar
  23. 23.
    Mou X, Ali Z, Li S et al (2015) Applications of magnetic nanoparticles in targeted drug delivery system. J Nanosci Nanotechnol 15:54–62PubMedCrossRefGoogle Scholar
  24. 24.
    Stewart MP, Sharei A, Ding X et al (2016) In vitro and ex vivo strategies for intracellular delivery. Nature 538:183–19225PubMedCrossRefGoogle Scholar
  25. 25.
    Ramamoorth M, Narvekar A (2015) Non viral vectors in gene therapy—an overview. J Clin Diagn Res 9:GE1–GE6CrossRefGoogle Scholar
  26. 26.
    Rychak JJ, Klibanov AL (2014) Nucleic acid delivery with microbubbles and ultrasound. Adv Drug Deliv Rev 72:82–93PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Kotterman MA, Chalberg TW, Schaffer DV (2015) Viral vectors for gene therapy: translational and clinical outlook. Annu Rev Biomed Eng 17:63–89PubMedCrossRefGoogle Scholar
  28. 28.
    Paefgen V, Doleschel D, Kiessling F (2015) Evolution of contrast agents for ultrasound imaging and ultrasound-mediated drug delivery. Front Pharmacol 6:197PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Huang C, Zhang H, Bai R (2017) Advances in ultrasound-targeted microbubble-mediated gene therapy for liver fibrosis. Acta Pharm Sin B 7:447–452PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Wible JH, Wojdyla JK, Bales GL et al (1996) Inhaled gases affect the ultrasound contrast produced by Albunex in anesthetized dogs. J Am Soc Echocardiogr 9:442–451PubMedCrossRefGoogle Scholar
  31. 31.
    Geiser EA, Buss DD, Wible JHJ et al (1996) Evidence for a relation between inspired gas mixture and the left ventricular contrast achieved with Albunex in a canine model. Clin Cardiol 19:289–295PubMedCrossRefGoogle Scholar
  32. 32.
    Mychaskiw G, Badr AE, Tibbs R et al (2000) Optison (FS069) disrupts the blood-brain barrier in rats. Anesth Analg 91:798–803PubMedCrossRefGoogle Scholar
  33. 33.
    Lozano MM, Longo ML (2009) Microbubbles coated with disaturated lipids and DSPE-PEG2000: phase behavior, collapse transitions, and permeability. Langmuir 25:3705–3712PubMedCrossRefGoogle Scholar
  34. 34.
    Duncan PB, Needham D (2004) Test of the Epstein-Plesset model for gas microparticle dissolution in aqueous media: effect of surface tension and gas undersaturation in solution. Langmuir 20:2567–2578PubMedCrossRefGoogle Scholar
  35. 35.
    Tinkov S, Winter G, Coester C et al (2010) New doxorubicin-loaded phospholipid microbubbles for targeted tumor therapy: part I--formulation development and in-vitro characterization. J Control Release 143:143–150PubMedCrossRefGoogle Scholar
  36. 36.
    Chang EH (2018) An introduction to contrast-enhanced ultrasound for nephrologists. Nephron 138:176–185PubMedCrossRefGoogle Scholar
  37. 37.
    Cavalli R, Bisazza A, Rolfo A et al (2009) Ultrasound-mediated oxygen delivery from chitosan nanobubbles. Int J Pharm 378:215–217PubMedCrossRefGoogle Scholar
  38. 38.
    Singhal S, Moser CC, Wheatley MA (1993) Surfactant-stabilized microbubbles as ultrasound contrast agents: stability study of span 60 and Tween 80 mixtures using a Langmuir trough. Langmuir 9:2426–2429CrossRefGoogle Scholar
  39. 39.
    Parhizkar M, Edirisinghea M, Stride E (2015) The effect of surfactant type and concentration on the size and stability of microbubbles produced in a capillary embedded T-junction device. RSC Adv 5:10751–10762CrossRefGoogle Scholar
  40. 40.
    Lee M, Lee EY, Lee D et al (2015) Stabilization and fabrication of microbubbles: applications for medical purposes and functional materials. Soft Matter 11:2067–2079PubMedCrossRefGoogle Scholar
  41. 41.
    Lucky SS, Soo KC, Zhang Y (2015) Nanoparticles in photodynamic therapy. Chem Rev 115:1990–2042PubMedCrossRefGoogle Scholar
  42. 42.
    Kamaly N, Yameen B, Wu J et al (2016) Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem Rev 116:2602–2663PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Ulbrich K, Hola K, Subr V et al (2016) Targeted drug delivery with polymers and magnetic nanoparticles: covalent and noncovalent approaches, release control, and clinical studies. Chem Rev 116:5338–5431PubMedCrossRefGoogle Scholar
  44. 44.
    Masood F (2016) Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Mater Sci Eng C Mater Biol Appl 60:569–578PubMedCrossRefGoogle Scholar
  45. 45.
    Peng J, Liu Q, Xu Z et al (2012) Synthesis of Interfacially active and magnetically responsive nanoparticles for multiphase separation applications. Adv Funct Mater 22:1732–1740CrossRefGoogle Scholar
  46. 46.
    Honary S, Zahir F (2013) Effect of zeta potential on the properties of Nano-drug delivery systems—a review (part 1). Trop J Pharm Res 12(255):264Google Scholar
  47. 47.
    Shao XR, Wei XQ, Song X et al (2015) Independent effect of polymeric nanoparticle zeta potential/surface charge, on their cytotoxicity and affinity to cells. Cell Prolif 48:465–474PubMedCrossRefGoogle Scholar
  48. 48.
    Suchaoin W, Pereira de Sousa I, Netsomboon K et al (2016) Development and in vitro evaluation of zeta potential changing self-emulsifying drug delivery systems for enhanced mucus permeation. Int J Pharm 510:255–262PubMedCrossRefGoogle Scholar
  49. 49.
    Gramiak R, Shah PM (1968) Echocardiography of the aortic root. Investig Radiol 3:356–366CrossRefGoogle Scholar
  50. 50.
    Zlitni A, Gambhir SS (2018) Molecular imaging agents for ultrasound. Curr Opin Chem Biol 45:113–120PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Li Y, Chen Y, Du M et al (2018) Ultrasound technology for molecular imaging: from contrast agents to multimodal imaging. ACS Biomater Sci Eng 4:2716–2728CrossRefGoogle Scholar
  52. 52.
    Teraphongphom N, Chhour P, Eisenbrey JR (2015) Nanoparticle loaded polymeric microbubbles as contrast agents for multimodal imaging. Langmuir 31:11858–11867PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Ahmed M, Gustafsson B, Aldi S et al (2019) Molecular imaging of a new multimodal microbubble for adhesion molecule targeting. Cell Mol Bioeng 12:15–32PubMedCrossRefGoogle Scholar
  54. 54.
    Pellico J, Ellis CM, Davis JJ (2019) Nanoparticle-based paramagnetic contrast agents for magnetic resonance imaging. Contrast Media Mol Imaging 2019:1845637PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Valizadeh A, Mikaeili H, Samiei M et al (2012) Quantum dots: synthesis, bioapplications, and toxicity. Nanoscale Res Lett 7:480PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Su J, Goldberg AF, Stoltz BM (2016) Label-free detection of single nanoparticles and biological molecules using microtoroid optical resonators. Light Sci Appl 5:e16001PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Kwok PC, Chan HK (2014) Nanotechnology versus other techniques in improving drug dissolution. Curr Pharm Des 20:474–482PubMedCrossRefGoogle Scholar
  58. 58.
    Bhakay MR, Rajesh ND, Ecevit B (2018) Bioavailability enhancement of poorly water-soluble drugs via Nanocomposites: formulation–processing aspects and challenges. Pharmaceutics 10:86PubMedCentralCrossRefPubMedGoogle Scholar
  59. 59.
    Cheng R, Meng F, Deng C et al (2013) Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials 34:3647–3657PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Karimi M, Ghasemi A, Sahandi Zangabad P et al (2016) Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem Soc Rev 45:1457–1501PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Baeza A, Colilla M, Vallet-Regí M (2015) Advances in mesoporous silica nanoparticles for targeted stimuli-responsive drug delivery. Expert Opin Drug Deliv 12:319–337PubMedCrossRefGoogle Scholar
  62. 62.
    Li Y, Gao GH, Lee DS (2013) Stimulus-sensitive polymeric nanoparticles and their applications as drug and gene carriers. Adv Healthc Mater 2:388–417PubMedCrossRefGoogle Scholar
  63. 63.
    Ding HM, Ma YQ (2013) Controlling cellular uptake of nanoparticles with pH-sensitive polymers. Sci Rep 3:2804PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Kang T, Li F, Baik S et al (2017) Surface design of magnetic nanoparticles for stimuli-responsive cancer imaging and therapy. Biomaterials 36:98–114CrossRefGoogle Scholar
  65. 65.
    Xu H, Zong H, Ma C et al (2017) Evaluation of nano-magnetic fluid on malignant glioma cells. Oncol Lett 13:677–680PubMedCrossRefGoogle Scholar
  66. 66.
    Huang L, Zhou K, Zhang J et al (2019) Efficacy and safety of high-intensity focused ultrasound ablation for hepatocellular carcinoma by changing the acoustic environment: microbubble contrast agent (SonoVue) and transcatheter arterial chemoembolization. Int J Hyperth 36:244–252Google Scholar
  67. 67.
    Huang Y, Mao K, Zhang B et al (2016) Superparamagnetic iron oxide nanoparticles conjugated with folic acid for dual target-specific drug delivery and MRI in cancer theranostics. Mater Sci Eng C Mater Biol Appl 70:763–771PubMedCrossRefGoogle Scholar
  68. 68.
    Liu Y, Yang F, Yuan C et al (2017) Magnetic nanoliposomes as in situ microbubble bombers for multimodality image-guided cancer theranostics. ACS Nano 11:1509–1519PubMedCrossRefGoogle Scholar
  69. 69.
    Zhou X, Guo L, Shi D et al (2019) Biocompatible chitosan Nanobubbles for ultrasound-mediated targeted delivery of doxorubicin. Nanoscale Res Lett 14:24PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Mørch Ý, Hansen R, Berg S et al (2015) Nanoparticle-stabilized microbubbles for multimodal imaging and drug delivery. Contrast Media Mol Imaging 10:356–366PubMedCrossRefGoogle Scholar
  71. 71.
    Chertok B, Langer R (2018) Circulating magnetic microbubbles for localized real-time control of drug delivery by ultrasonography-guided magnetic targeting and ultrasound. Theranostics 8:341–357PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Owen J, Rademeyer P, Chung D et al (2015) Magnetic targeting of microbubbles against physiologically relevant flow conditions. Interface Focus 5:20150001PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Das P, Colombo M, Prosperi D (2019) Recent advances in magnetic fluid hyperthermia for cancer therapy. Colloids Surf B Biointerfaces 174:42–55PubMedCrossRefGoogle Scholar
  74. 74.
    Xi XP, Zong YJ, Ji YH et al (2017) Experiment research of focused ultrasound combined with drug and microbubble for treatment of central nervous system leukemia. Oncotarget 9:5424–5434PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Jose A, Surendran M, Fazal S et al (2018) Multifunctional fluorescent iron quantum clusters for non-invasive radiofrequency ablationof cancer cells. Colloids Surf B Biointerfaces 165:371–380PubMedCrossRefGoogle Scholar
  76. 76.
    Tang H, Guo Y, Peng L et al (2018) In vivo targeted, responsive, and synergistic cancer nanotheranostics by magnetic resonance imaging-guided synergistic high-intensity focused ultrasound ablation and chemotherapy. ACS Appl Mater Interfaces 10:15428–15441PubMedCrossRefGoogle Scholar
  77. 77.
    Hellmich MR, Szabo C (2015) Hydrogen sulfide and cancer. Handb Exp Pharmacol 230:233–241PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Yu L, Hu P, Chen Y (2018) Gas-generating Nanoplatforms: material chemistry, multifunctionality, and Gas Therapy. Adv Mater 30:e1801964PubMedCrossRefGoogle Scholar
  79. 79.
    de Jong N, Hoff L (1993) Ultrasound scattering properties of Albunex microspheres. Ultrasonics 31:175–181PubMedCrossRefGoogle Scholar
  80. 80.
    Schwarz KQ, Chen X, Steinmetz S et al (1997) Harmonic imaging with Levovist. J Am Soc Echocardiogr 10:1–10PubMedCrossRefGoogle Scholar
  81. 81.
    Cohen JL, Cheirif J, Segar DS et al (1998) Improved left ventricular endocardial border delineation and opacification with OPTISON (FS069), a new echocardiographic contrast agent. Results of a phase III Multicenter Trial. J Am Coll Cardiol 32:746–752PubMedCrossRefGoogle Scholar
  82. 82.
    Sontum PC (2008) Physicochemical characteristics of Sonazoid, a new contrast agent for ultrasound imaging. Ultrasound Med Biol 34:824–833PubMedCrossRefGoogle Scholar
  83. 83.
    Lindner JR, Wei K, Kaul S (1999) Imaging of myocardial perfusion with SonoVue (TM) in patients with a prior myocardial infarction. Echocardiography 16:753–760PubMedCrossRefGoogle Scholar
  84. 84.
    Cho HY, Lee T, Yoon J et al (2018) Magnetic Oleosome as a functional lipophilic drug carrier for cancer therapy. ACS Appl Mater Interfaces 10:9301–9309PubMedCrossRefGoogle Scholar
  85. 85.
    Xu S, Yang F, Zhou X et al (2015) Uniform PEGylated PLGA microcapsules with embedded Fe3O4 nanoparticles for US/MR dual-modality imaging. ACS Appl Mater Interfaces 7:20460–20468PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Ekaterina Litau
    • 1
  1. 1.Royal Holloway University of LondonEghamUK

Personalised recommendations