Probing RNA–Protein Interactions and RNA Compaction by Sedimentation Velocity Analytical Ultracentrifugation

  • Somdeb MitraEmail author
  • Borries Demeler
Part of the Methods in Molecular Biology book series (MIMB, volume 2113)


Recent advances in multi-wavelength analytical ultracentrifugation (MWL-AUC) combine the power of an exquisitely sensitive hydrodynamic-based separation technique with the added dimension of spectral separation. This added dimension has opened up new doors to much improved characterization of multiple, interacting species in solution. When applied to structural investigations of RNA, MWL-AUC can precisely report on the hydrodynamic radius and the overall shape of an RNA molecule by enabling precise measurements of its sedimentation and diffusion coefficients and identify the stoichiometry of interacting components based on spectral decomposition. Information provided in this chapter will allow an investigator to design experiments for probing ion and/or protein-induced global conformational changes of an RNA molecule and exploit spectral differences between proteins and RNA to characterize their interactions in a physiological solution environment.

Key words

RNA folding Counterion Multi-wavelength analytical ultracentrifugation Sedimentation velocity Hydrodynamic measurements 



S.M. is grateful to the Chemistry Department of New York University to host him as a faculty during the preparation of this manuscript. The Twort intron work described here was originally funded by 1RO1-GM085130 from the National Institute of General Medical Sciences of the National Institutes of Health to Prof. Michael D. Brenowitz at the Albert Einstein College of Medicine. B.D. wishes to credit NIH-NIGMS grant RO1-120600 and the Canada Research Chairs program for financial support of this work.


  1. 1.
    Gesteland RF, Cech TR, Atkins JF (2006) The RNA world, vol 43. Cold Spring Harbor Press, New YorkGoogle Scholar
  2. 2.
    Fresco JR (1998) RNA structure and function, vol 35. Cold Spring Harbor Press, New YorkGoogle Scholar
  3. 3.
    Dethoff EA, Chugh J, Mustoe AM, Al-Hashimi HM (2012) Functional complexity and regulation through RNA dynamics. Nature 482(7385):322–330PubMedPubMedCentralGoogle Scholar
  4. 4.
    Mustoe AM, Brooks CL, Al-Hashimi HM (2014) Hierarchy of RNA functional dynamics. Annu Rev Biochem 83:441–466PubMedPubMedCentralGoogle Scholar
  5. 5.
    Mitra S (2009) Using analytical ultracentrifugation (AUC) to measure global conformational changes accompanying equilibrium tertiary folding of RNA molecules. Methods Enzymol 469:209–236PubMedGoogle Scholar
  6. 6.
    Brautigam CA, Wakeman CA, Winkler WC (2009) Methods for analysis of ligand-induced RNA conformational changes. Methods Mol Biol 540:77–95PubMedGoogle Scholar
  7. 7.
    Mitra S (2014) Detecting RNA tertiary folding by sedimentation velocity analytical ultracentrifugation. Methods Mol Biol 1086:265–288PubMedGoogle Scholar
  8. 8.
    Chaires JB, Dean WL, Le HT, Trent JO (2015) Hydrodynamic models of G-Quadruplex structures. Methods Enzymol 562:287–304PubMedPubMedCentralGoogle Scholar
  9. 9.
    Kieft JS, Costantino DA, Filbin ME, Hammond J, Pfingsten JS (2007) Structural methods for studying IRES function. Methods Enzymol 430:333–371PubMedGoogle Scholar
  10. 10.
    Takamoto K, He Q, Morris S, Chance MR, Brenowitz M (2002) Monovalent cations mediate formation of native tertiary structure of the Tetrahymena thermophila ribozyme. Nat Struct Biol 9(12):928–933PubMedGoogle Scholar
  11. 11.
    Chillon I, Marcia M, Legiewicz M, Liu F, Somarowthu S, Pyle AM (2015) Native purification and analysis of long RNAs. Methods Enzymol 558:3–37PubMedPubMedCentralGoogle Scholar
  12. 12.
    Wang X, Xi W, Toomey S, Chiang YC, Hasek J, Laue TM, Denis CL (2016) Stoichiometry and change of the mRNA closed-loop factors as translating ribosomes transit from initiation to elongation. PLoS One 11(3):e0150616PubMedPubMedCentralGoogle Scholar
  13. 13.
    Luque D, Mata CP, Gonzalez-Camacho F, Gonzalez JM, Gomez-Blanco J, Alfonso C, Rivas G, Havens WM, Kanematsu S, Suzuki N, Ghabrial SA, Trus BL, Caston JR (2016) Heterodimers as the structural unit of the T=1 capsid of the fungal double-stranded RNA Rosellinia necatrix quadrivirus 1. J Virol 90(24):11220–11230PubMedPubMedCentralGoogle Scholar
  14. 14.
    Patel TR, Chojnowski G, Astha KA, McKenna SA, Bujnicki JM (2017) Structural studies of RNA-protein complexes: a hybrid approach involving hydrodynamics, scattering, and computational methods. Methods 118-119:146–162PubMedGoogle Scholar
  15. 15.
    Zhang J, Pearson JZ, Gorbet GE, Colfen H, Germann MW, Brinton MA, Demeler B (2017) Spectral and hydrodynamic analysis of West Nile virus RNA-protein interactions by multiwavelength sedimentation velocity in the analytical ultracentrifuge. Anal Chem 89(1):862–870PubMedGoogle Scholar
  16. 16.
    Wong CJ, Launer-Felty K, Cole JL (2011) Analysis of PKR-RNA interactions by sedimentation velocity. Methods Enzymol 488:59–79. Scholar
  17. 17.
    Berke IC, Modis Y (2012) MDA5 cooperatively forms dimers and ATP-sensitive filaments upon binding double-stranded RNA. EMBO J 31(7):1714–1726PubMedPubMedCentralGoogle Scholar
  18. 18.
    Mayo CB, Wong CJ, Lopez PE, Lary JW, Cole JL (2016) Activation of PKR by short stem-loop RNAs containing single-stranded arms. RNA 22(7):1065–1075PubMedPubMedCentralGoogle Scholar
  19. 19.
    Pearson JZ, Krause F, Haffke D, Demeler B, Schilling K, Colfen H (2015) Next-generation AUC adds a spectral dimension: development of multiwavelength detectors for the analytical ultracentrifuge. Methods Enzymol 562:1–26PubMedGoogle Scholar
  20. 20.
    Pearson J, Walter J, Peukert W, Colfen H (2018) Advanced multiwavelength detection in analytical ultracentrifugation. Anal Chem 90(2):1280–1291PubMedGoogle Scholar
  21. 21.
    Colfen H, Laue TM, Wohlleben W, Schilling K, Karabudak E, Langhorst BW, Brookes E, Dubbs B, Zollars D, Rocco M, Demeler B (2010) The open AUC project. Eur Biophys J 39(3):347–359PubMedGoogle Scholar
  22. 22.
    Gorbet GE, Pearson JZ, Demeler AK, Colfen H, Demeler B (2015) Next-generation AUC: analysis of multiwavelength analytical ultracentrifugation data. Methods Enzymol 562:27–47PubMedGoogle Scholar
  23. 23.
    Johnson CN, Gorbet GE, Ramsower H, Urquidi J, Brancaleon L, Demeler B (2018) Multi-wavelength analytical ultracentrifugation of human serum albumin complexed with porphyrin. Eur Biophys J 47(7):789–797PubMedPubMedCentralGoogle Scholar
  24. 24.
    Demeler B, Gorbet GE (2016) Analytical ultracentrifugation data analysis with UltraScan-III. In: Uchiyama S, Arisaka F, Stafford W, Laue T (eds) Analytical ultracentrifugation. Springer, Cham, pp 119–143Google Scholar
  25. 25.
    Byron O, Nischang I, Patel TR (2018) European biophysics journal. In: Byron O, Nischang I, Patel TR (eds) Special issue: 23rd international analytical ultracentrifugation workshop and symposium, AUC 2017, vol 693. Springer International Publishing, ChamGoogle Scholar
  26. 26.
    Fujita H (1975) Foundations of ultracentrifugal analysis. Wiley, New YorkGoogle Scholar
  27. 27.
    Philo JS (2000) A method for directly fitting the time derivative of sedimentation velocity data and an alternative algorithm for calculating sedimentation coefficient distribution functions. Anal Biochem 279(2):151–163PubMedGoogle Scholar
  28. 28.
    Stafford WF 3rd (1994) Boundary analysis in sedimentation velocity experiments. Methods Enzymol 240:478–501PubMedGoogle Scholar
  29. 29.
    Laue TM, Stafford WF 3rd (1999) Modern applications of analytical ultracentrifugation. Annu Rev Biophys Biomol Struct 28:75–100PubMedGoogle Scholar
  30. 30.
    Stafford WF 3rd (1992) Boundary analysis in sedimentation transport experiments: a procedure for obtaining sedimentation coefficient distributions using the time derivative of the concentration profile. Anal Biochem 203(2):295–301PubMedGoogle Scholar
  31. 31.
    Correia JJ, Stafford WF (2015) Sedimentation velocity: a classical perspective. Methods Enzymol 562:49–80PubMedGoogle Scholar
  32. 32.
    Costantino D, Kieft JS (2005) A preformed compact ribosome-binding domain in the cricket paralysis-like virus IRES RNAs. RNA 11(3):332–343PubMedPubMedCentralGoogle Scholar
  33. 33.
    Tanford C (1961) Physical chemistry of macromolecules. Wiley, New YorkGoogle Scholar
  34. 34.
    Cantor CR, Schimmel PR (1980) Ultracentrifugation. In: Bartlett AC (ed) Biophysical chemistry, Part II: techniques for the study of biological structure and function, vol II. W.H. Freeman and Company, San FranciscoGoogle Scholar
  35. 35.
    Scott DJ, Schuck P (2005) A brief introduction to the analytical ultracentrifugation of proteins for beginners. Analytical ultracentrifugation: techniques and methods. Royal Society of Chemistry, Cambridge, UKGoogle Scholar
  36. 36.
    Uchiyama SA (2016) Important and essential theoretical aspects of AUC. Analytical ultracentrifugation. Springer, TokyoGoogle Scholar
  37. 37.
    Demeler B, Brookes E, Wang R, Schirf V, Kim CA (2010) Characterization of reversible associations by sedimentation velocity with UltraScan. Macromol Biosci 10(7):775–782PubMedGoogle Scholar
  38. 38.
    MacGregor IK, Anderson AL, Laue TM (2004) Fluorescence detection for the XLI analytical ultracentrifuge. Biophys Chem 108(1–3):165–185PubMedGoogle Scholar
  39. 39.
    Lawson CLH, Hanson RJ (1974) Solving least squares problems. Automatic computation. Prentice-Hall, Englewood CliffsGoogle Scholar
  40. 40.
    Brookes E, Cao W, Demeler B (2010) A two-dimensional spectrum analysis for sedimentation velocity experiments of mixtures with heterogeneity in molecular weight and shape. Eur Biophys J 39(3):405–414PubMedGoogle Scholar
  41. 41.
    Brookes E, Demeler B (2007) Parsimonious regularization using genetic algorithms applied to the analysis of analytical ultracentrifugation experiments. In: GECCO ACM proceedings of the 9th annual conference on genetic and evolutionary computation, pp 361–368Google Scholar
  42. 42.
    Demeler B, Brookes E (2008) Monte Carlo analysis of sedimentation experiments. Colloid Polym Sci 268(2):129–137Google Scholar
  43. 43.
    Beckert B, Masquida B (2011) Synthesis of RNA by in vitro transcription. Methods Mol Biol 703:29–41PubMedGoogle Scholar
  44. 44.
    Shcherbakova I, Gupta S, Chance M, Brenowitz M (2004) Monovalent ion-mediated folding of the Tetrahymena thermophila ribozyme. J Mol Biol 342(5):1431–1442PubMedGoogle Scholar
  45. 45.
    Mitra S, Laederach A, Golden BL, Altman RB, Brenowitz M (2011) RNA molecules with conserved catalytic cores but variable peripheries fold along unique energetically optimized pathways. RNA 17(8):1589–1603PubMedPubMedCentralGoogle Scholar
  46. 46.
    Shcherbakova I, Mitra S (2009) Hydroxyl-radical footprinting to probe equilibrium changes in RNA tertiary structure. Methods Enzymol 468:31–46PubMedGoogle Scholar
  47. 47.
    Kwok L, Shcherbakova I, Lamb J, Park H, Andresen K, Smith H, Brenowitz M, Pollack L (2006) Concordant exploration of the kinetics of RNA folding from global and local perspectives. J Mol Biol 355(2):282–293PubMedGoogle Scholar
  48. 48.
    Williams TL, Gorbet GE, Demeler B (2018) Multi-speed sedimentation velocity simulations with UltraScan-III. Eur Biophys J 47(7):815–823PubMedPubMedCentralGoogle Scholar
  49. 49.
    Cao W, Demeler B (2008) Modeling analytical ultracentrifugation experiments with an adaptive space-time finite element solution for multicomponent reacting systems. Biophys J 95(1):54–65PubMedPubMedCentralGoogle Scholar
  50. 50.
    Cao W, Demeler B (2005) Modeling analytical ultracentrifugation experiments with an adaptive space-time finite element solution of the Lamm equation. Biophys J 89(3):1589–1602PubMedPubMedCentralGoogle Scholar
  51. 51.
    Philo JS (2006) Improved methods for fitting sedimentation coefficient distributions derived by time-derivative techniques. Anal Biochem 354(2):238–246PubMedGoogle Scholar
  52. 52.
    Schuck P (2003) On the analysis of protein self-association by sedimentation velocity analytical ultracentrifugation. Anal Biochem 320(1):104–124PubMedGoogle Scholar
  53. 53.
    Brautigam CA (2011) Using Lamm-equation modeling of sedimentation velocity data to determine the kinetic and thermodynamic properties of macromolecular interactions. Methods 54(1):4–15PubMedGoogle Scholar
  54. 54.
    Behlke J, Ristau O (1997) Molecular mass determination by sedimentation velocity experiments and direct fitting of the concentration profiles. Biophys J 72(1):428–434PubMedPubMedCentralGoogle Scholar
  55. 55.
    Philo JS (1997) An improved function for fitting sedimentation velocity data for low-molecular-weight solutes. Biophys J 72(1):435–444PubMedPubMedCentralGoogle Scholar
  56. 56.
    Schuck P, MacPhee CE, Howlett GJ (1998) Determination of sedimentation coefficients for small peptides. Biophys J 74(1):466–474PubMedPubMedCentralGoogle Scholar
  57. 57.
    Brown PH, Schuck P (2008) A new adaptive grid-size algorithm for the simulation of sedimentation velocity profiles in analytical ultracentrifugation. Comput Phys Commun 178(2):105–120PubMedPubMedCentralGoogle Scholar
  58. 58.
    Sherwood PJ Stafford WF (2016) SEDANAL: model-dependent and model-independent analysis of sedimentation data. In: Uchiyama S, Arisaka F, Stafford W, Laue T (eds) Analytical ultracentrifugation. Springer, Tokyo, pp 81–102Google Scholar
  59. 59.
    Memon S, Riedel M, Janetzko F, Demeler B, Gorbet G, Marru S, Grimshaw A, Gunathilake L, Singh R, Attig N, Lippert T (2014) Advancements of the UltraScan scientific gateway for open standards-based cyberinfrastructures. Concurr Comput Pract Exp 26(13):2280–2291Google Scholar
  60. 60.
    Pierce M, Marru S, Demeler B, Singh R, Gorbet G (2014) The apache airavata application programming interface: overview and evaluation with the UltraScan science gateway. In: 9th gateway computing environments workshop (GCE 2014), New Orleans, LA, USA, 2014. IEEE Press, PiscatawayGoogle Scholar
  61. 61.
    Kieft JS, Batey RT (2004) A general method for rapid and nondenaturing purification of RNAs. RNA 10(6):988–995PubMedPubMedCentralGoogle Scholar
  62. 62.
    Takamoto K, Das R, He Q, Doniach S, Brenowitz M, Herschlag D, Chance M (2004) Principles of RNA compaction: insights from the equilibrium folding pathway of the P4-P6 RNA domain in monovalent cations. J Mol Biol 343(5):1195–1206PubMedGoogle Scholar
  63. 63.
    Sclavi B, Sullivan M, Chance MR, Brenowitz M, Woodson SA (1998) RNA folding at millisecond intervals by synchrotron hydroxyl radical footprinting. Science 279(5358):1940–1943PubMedGoogle Scholar
  64. 64.
    Chauhan S, Woodson SA (2008) Tertiary interactions determine the accuracy of RNA folding. J Am Chem Soc 130(4):1296–1303PubMedPubMedCentralGoogle Scholar
  65. 65.
    Nelson TG, Ramsay GD, Perugini MA (2016) Fluorescence detection system. In: Uchiyama S, Arisaka F, Stafford W, Laue T (eds) Analytical ultracentrifugation. Springer, Tokyo, pp 39–61Google Scholar
  66. 66.
    Pan J, Woodson SA (1998) Folding intermediates of a self-splicing RNA: mispairing of the catalytic core. J Mol Biol 280(4):597–609PubMedGoogle Scholar
  67. 67.
    Wilkinson KA, Merino EJ, Weeks KM (2006) Selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE): quantitative RNA structure analysis at single nucleotide resolution. Nat Protoc 1(3):1610–1616PubMedGoogle Scholar
  68. 68.
    Grohman J, Del Campo M, Bhaskaran H, Tijerina P, Lambowitz A, Russell R (2007) Probing the mechanisms of DEAD-box proteins as general RNA chaperones: the C-terminal domain of CYT-19 mediates general recognition of RNA. Biochemistry 46(11):3013–3022PubMedPubMedCentralGoogle Scholar
  69. 69.
    Carey MF, Peterson CL, Smale ST (2013) The RNase protection assay. Cold Spring Harb Protoc 2013(3):pdb.prot071910PubMedGoogle Scholar
  70. 70.
    Herschlag D, Cech TR (1990) Catalysis of RNA cleavage by the Tetrahymena thermophila ribozyme. 1. Kinetic description of the reaction of an RNA substrate complementary to the active site. Biochemistry 29(44):10159–10171PubMedGoogle Scholar
  71. 71.
    Russell R, Das R, Suh H, Travers KJ, Laederach A, Engelhardt MA, Herschlag D (2006) The paradoxical behavior of a highly structured misfolded intermediate in RNA folding. J Mol Biol 363(2):531–544PubMedGoogle Scholar
  72. 72.
    Wan Y, Mitchell D 3rd, Russell R (2009) Catalytic activity as a probe of native RNA folding. Methods Enzymol 468:195–218PubMedPubMedCentralGoogle Scholar
  73. 73.
    Mitra S, Brenowitz M (2008) Metal ions and RNA folding kinetics. In: Hud NV (ed) Nucleic-acid metal ion interactions. Royal Society of Chemistry, Cambridge, pp 221–265Google Scholar
  74. 74.
    Hud NV (2008) Nucleic acid-metal ion interactions. Royal Society of Chemistry, CambridgeGoogle Scholar
  75. 75.
    Chen C, Mitra S, Jonikas M, Martin J, Brenowitz M, Laederach A (2013) Understanding the role of three-dimensional topology in determining the folding intermediates of group I introns. Biophys J 104(6):1326–1337PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of ChemistryNew York UniversityNew YorkUSA
  2. 2.Department of Chemistry and BiochemistryUniversity of LethbridgeLethbridgeCanada

Personalised recommendations