Advertisement

Radioisotope-Based Protocol for Determination of Central Carbon Metabolism in T Cells

  • Xuyong Chen
  • John William Sherman
  • Ruoning WangEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2111)

Abstract

T lymphocytes are the major components of the adaptive immune system. It’s been known that T cells are able to engage a diverse range of metabolic programs to meet the metabolic demands during their life cycle from early development, activation to functional differentiation. Central carbon metabolic pathways provide energy, reducing power, and biosynthetic precursors to support T cell homeostasis, proliferation, and immune functions. As such, quantitative or semiquantitative analysis of central carbon metabolic flux activities offers mechanistic details, as well as insights into the regulation of metabolic pathways and the impact of changing metabolic programs on T cell life cycle. Global profiling of cellular metabolites by mass spectrometry-based metabolomics and metabolic flux analysis (MFA) using radioactive and nonradioactive/stable isotope approaches are powerful tools for determination of central carbon metabolic pathway activity. Here, we describe in detail the procedure for the radioisotope-based approach of analyzing central carbon metabolic fluxes in T cells.

Key words

T lymphocytes Radioactive isotope Central carbon metabolism 

Notes

Acknowledgments

This work was supported by 1R01AI114581 from the National Institute of Health and 128436-RSG-15-180-01-LIB from the American Cancer Society (R.W.).

References

  1. 1.
    Slack M, Wang T, Wang R (2015) T cell metabolic reprogramming and plasticity. Mol Immunol 68(2 Pt C):507–512.  https://doi.org/10.1016/j.molimm.2015.07.036CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Pearce EL, Poffenberger MC, Chang C-H, Jones RG (2013) Fueling immunity: insights into metabolism and lymphocyte function. Science (New York, NY) 342(6155):1242454–1242454.  https://doi.org/10.1126/science.1242454CrossRefGoogle Scholar
  3. 3.
    Verbist KC, Guy CS, Milasta S, Liedmann S, Kamiński MM, Wang R, Green DR (2016) Metabolic maintenance of cell asymmetry following division in activated T lymphocytes. Nature 532(7599):389–393.  https://doi.org/10.1038/nature17442CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Wang R, Green DR (2012) Metabolic reprogramming and metabolic dependency in T cells. Immunol Rev 249(1):14–26.  https://doi.org/10.1111/j.1600-065X.2012.01155.xCrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Wang R, Green DR (2012) Metabolic checkpoints in activated T cells. Nat Immunol 13:907.  https://doi.org/10.1038/ni.2386CrossRefPubMedGoogle Scholar
  6. 6.
    Wang R, Dillon CP, Shi LZ, Milasta S, Carter R, Finkelstein D, McCormick LL, Fitzgerald P, Chi H, Munger J, Green DR (2011) The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35(6):871–882.  https://doi.org/10.1016/j.immuni.2011.09.021CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Wang R, Green DR (2012) The immune diet: meeting the metabolic demands of lymphocyte activation. F1000 Biol Rep 4:9.  https://doi.org/10.3410/B4-9CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Guijas C, Montenegro-Burke JR, Warth B, Spilker ME, Siuzdak G (2018) Metabolomics activity screening for identifying metabolites that modulate phenotype. Nat Biotechnol 36(4):316–320.  https://doi.org/10.1038/nbt.4101CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Buescher JM, Antoniewicz MR, Boros LG, Burgess SC, Brunengraber H, Clish CB, DeBerardinis RJ, Feron O, Frezza C, Ghesquiere B, Gottlieb E, Hiller K, Jones RG, Kamphorst JJ, Kibbey RG, Kimmelman AC, Locasale JW, Lunt SY, Maddocks ODK, Malloy C, Metallo CM, Meuillet EJ, Munger J, Nöh K, Rabinowitz JD, Ralser M, Sauer U, Stephanopoulos G, St-Pierre J, Tennant DA, Wittmann C, Vander Heiden MG, Vazquez A, Vousden K, Young JD, Zamboni N, Fendt S-M (2015) A roadmap for interpreting (13)C metabolite labeling patterns from cells. Curr Opin Biotechnol 34:189–201.  https://doi.org/10.1016/j.copbio.2015.02.003CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Lu W, Su X, Klein MS, Lewis IA, Fiehn O, Rabinowitz JD (2017) Metabolite measurement: pitfalls to avoid and practices to follow. Annu Rev Biochem 86:277–304.  https://doi.org/10.1146/annurev-biochem-061516-044952CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Fan TWM, Lane AN (2016) Applications of NMR spectroscopy to systems biochemistry. Prog Nucl Magn Reson Spectrosc 92–93:18–53.  https://doi.org/10.1016/j.pnmrs.2016.01.005CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Wolfe RR, Chinkes DL (2005) Isotope tracers in metabolic research: principles and practice of kinetic analysis. Wiley, Hoboken, NJGoogle Scholar
  13. 13.
    Goodwin GW, Cohen DM, Taegtmeyer H (2001) [5-3H]glucose overestimates glycolytic flux in isolated working rat heart: role of the pentose phosphate pathway. Am J Physiol Endocrinol Metab 280(3):E502–E508.  https://doi.org/10.1152/ajpendo.2001.280.3.E502CrossRefPubMedGoogle Scholar
  14. 14.
    Ashcroft SJ, Weerasinghe LC, Bassett JM, Randle PJ (1972) The pentose cycle and insulin release in mouse pancreatic islets. Biochem J 126(3):525–532PubMedPubMedCentralGoogle Scholar
  15. 15.
    Brivet M, Slama A, Saudubray J-M, Legrand A, Lemonnier A (1995) Rapid diagnosis of long chain and medium chain fatty acid oxidation disorders using lymphocytes. Ann Clin Biochem 32(2):154–159.  https://doi.org/10.1177/000456329503200204CrossRefPubMedGoogle Scholar
  16. 16.
    Moon A, Rhead WJ (1987) Complementation analysis of fatty acid oxidation disorders. J Clin Invest 79(1):59–64.  https://doi.org/10.1172/JCI112808CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Ando S, Tomita-Yamaguchi M, Santoro TJ (1993) Long chain fatty acid utilization of T-cells from autoimmune MRL-lpr/lpr mice. Biochim Biophys Acta (BBA) - Mol Basis Dis 1181(2):141–147.  https://doi.org/10.1016/0925-4439(93)90103-8CrossRefGoogle Scholar
  18. 18.
    Brand K, Williams JF, Weidemann MJ (1984) Glucose and glutamine metabolism in rat thymocytes. Biochem J 221(2):471–475CrossRefGoogle Scholar
  19. 19.
    Willems HL, de Kort TF, Trijbels FJ, Monnens LA, Veerkamp JH (1978) Determination of pyruvate oxidation rate and citric acid cycle activity in intact human leukocytes and fibroblasts. Clin Chem 24(2):200PubMedGoogle Scholar
  20. 20.
    Katz J, Wood HG (1960) The use of glucose-C14 for the evaluation of the pathways of glucose metabolism. J Biol Chem 235(8):2165–2177PubMedGoogle Scholar
  21. 21.
    Wood HG, Katz J, Landau BR (1963) Estimation of pathways of carbohydrate metabolism. Biochem Z 338:809–847PubMedGoogle Scholar
  22. 22.
    Yao C-H, Liu G-Y, Wang R, Moon SH, Gross RW, Patti GJ (2018) Identifying off-target effects of etomoxir reveals that carnitine palmitoyltransferase I is essential for cancer cell proliferation independent of β-oxidation. PLoS Biol 16(3):e2003782.  https://doi.org/10.1371/journal.pbio.2003782CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Raud B, Roy DG, Divakaruni AS, Tarasenko TN, Franke R, Ma EH, Samborska B, Hsieh WY, Wong AH, Stüve P, Arnold-Schrauf C, Guderian M, Lochner M, Rampertaap S, Romito K, Monsale J, Brönstrup M, Bensinger SJ, Murphy AN, McGuire PJ, Jones RG, Sparwasser T, Berod L (2018) Etomoxir actions on regulatory and memory T cells are independent of Cpt1a-mediated fatty acid oxidation. Cell Metab 28(3):504–515.e507.  https://doi.org/10.1016/j.cmet.2018.06.002CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Xuyong Chen
    • 1
  • John William Sherman
    • 1
  • Ruoning Wang
    • 1
    Email author
  1. 1.Center for Childhood Cancer & Blood Diseases, Hematology/Oncology & BMT, The Research Institute at Nationwide Children’s HospitalOhio State UniversityColumbusUSA

Personalised recommendations