Advertisement

Generation of IL17RB Knockout Cell Lines Using CRISPR/Cas9-Based Genome Editing

  • Olivia Hu
  • Alessandro Provvido
  • Yan ZhuEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2108)

Abstract

CRISPR/Cas9-based genome editing is an inexpensive and efficient tool for genetic modification. Here we present a methodological approach of establishing interleukin-17 receptor B (IL17RB) knockout cell lines using CRISPR/Cas9-mediated genomic deletion. IL17RB gene encodes for a cytokine receptor that specifically binds to IL17B and IL17E and overexpressed in various cancers. The method involves CRISPR design, CRISPR cloning, delivery of CRISPR clone into cells, and verification of IL17RB gene deletion by deletion screening primer design, genomic DNA extraction, and polymerase chain reaction (PCR). Similar approaches can be used for generating mammalian cell lines with gene knockout for other genes of interest.

Key words

CRISPR/Cas9 Genomic deletion Gene knockout Interleukin-17 receptor B 

Notes

Acknowledgment

This work was supported by St. John’s University and NIH grant CA213426 to Yan Zhu.

References

  1. 1.
    Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823CrossRefGoogle Scholar
  2. 2.
    Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE et al (2013) RNA-guided human genome engineering via Cas9. Science 339(6121):823–826CrossRefGoogle Scholar
  3. 3.
    Terns MP (2018) CRISPR-based technologies: impact of RNA-targeting systems. Mol Cell 72(3):404–412CrossRefGoogle Scholar
  4. 4.
    Gaj T, Gersbach CA, Barbas CF 3rd (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31(7):397–405CrossRefGoogle Scholar
  5. 5.
    Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8(11):2281–2308CrossRefGoogle Scholar
  6. 6.
    Hsu PD, Zhang F (2012) Dissecting neural function using targeted genome engineering technologies. ACS Chem Neurosci 3(8):603–610CrossRefGoogle Scholar
  7. 7.
    Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11(9):636–646CrossRefGoogle Scholar
  8. 8.
    Knott GJ, Doudna JA (2018) CRISPR-Cas guides the future of genetic engineering. Science 361(6405):866–869CrossRefGoogle Scholar
  9. 9.
    Bie Q, Jin C, Zhang B, Dong H (2017) IL-17B: a new area of study in the IL-17 family. Mol Immunol 90:50–56CrossRefGoogle Scholar
  10. 10.
    Alinejad V, Dolati S, Motallebnezhad M, Yousefi M (2017) The role of IL17B-IL17RB signaling pathway in breast cancer. Biomed Pharmacother 88:795–803CrossRefGoogle Scholar
  11. 11.
    Bie Q, Sun C, Gong A, Li C, Su Z, Zheng D et al (2016) Non-tumor tissue derived interleukin-17B activates IL-17RB/AKT/beta-catenin pathway to enhance the stemness of gastric cancer. Sci Rep 6:25447CrossRefGoogle Scholar
  12. 12.
    Wu HH, Hwang-Verslues WW, Lee WH, Huang CK, Wei PC, Chen CL et al (2015) Targeting IL-17B-IL-17RB signaling with an anti-IL-17RB antibody blocks pancreatic cancer metastasis by silencing multiple chemokines. J Exp Med 212(3):333–349CrossRefGoogle Scholar
  13. 13.
    Eiro N, Fernandez-Gomez J, Sacristan R, Fernandez-Garcia B, Lobo B, Gonzalez-Suarez J et al (2017) Stromal factors involved in human prostate cancer development, progression and castration resistance. J Cancer Res Clin Oncol 143(2):351–359CrossRefGoogle Scholar
  14. 14.
    Ren L, Xu Y, Liu C, Wang S, Qin G (2017) IL-17RB enhances thyroid cancer cell invasion and metastasis via ERK1/2 pathway-mediated MMP-9 expression. Mol Immunol 90:126–135CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Biological SciencesSt. John’s UniversityQueensUSA

Personalised recommendations