Advertisement

Methods for Studying TNFα-Induced Autophagy

  • Sheyda Najafi
  • Ehab M. Abo-Ali
  • Vikas V. DukhandeEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2108)

Abstract

Autophagy is an evolutionarily conserved cellular mechanism in eukaryotes that plays an important role in the maintenance of cellular homeostasis. The autophagy process maintains protein homeostasis by recycling damaged organelles and degrading many long-lived proteins in conjunction with the ubiquitin-proteasome system. Cytokines are low-molecular-weight secreted proteins that regulate a broad range of biological activities. For instance, pro-inflammatory cytokines such as tumor necrosis factor-α (TNFα) induce inflammation, autophagy, and apoptotic cell death. In this chapter, we discuss experimental techniques such as immunoblotting and fluorescence microscopy that can be utilized to measure autophagy in response to TNFα treatment.

Key words

Apoptosis Autophagy Bafilomycin A1 Chloroquine Fluorescence microscopy Immunoblotting LC3 p62 TNFα 

Notes

Acknowledgments

Research reported in this chapter was supported by an award from the National Institute of General Medical Sciences of the National Institutes of Health under Award Number SC2GM125550 to VVD and by the College of Pharmacy and Health Sciences, St. John’s University startup fund to VVD.

References

  1. 1.
    Chu L-Y, Hsueh Y-C, Cheng H-L, Wu KK (2017) Cytokine-induced autophagy promotes long-term VCAM-1 but not ICAM-1 expression by degrading late-phase IκBα. Sci Rep 7:12472.  https://doi.org/10.1038/s41598-017-12641-8CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Carswell EA, Old LJ, Kassel RL et al (1975) An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci U S A 72:3666–3670.  https://doi.org/10.1073/pnas.72.9.3666CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Sedger LM, McDermott MF (2014) TNF and TNF-receptors: from mediators of cell death and inflammation to therapeutic giants - past, present and future. Cytokine Growth Factor Rev 25:453–472.  https://doi.org/10.1016/j.cytogfr.2014.07.016CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Ravikumar B, Sarkar S, Davies JE et al (2010) Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev 90:1383–1435.  https://doi.org/10.1152/physrev.00030.2009CrossRefPubMedGoogle Scholar
  5. 5.
    Ryter SW, Cloonan SM, Choi AMK (2013) Autophagy: a critical regulator of cellular metabolism and homeostasis. Mol Cells 36:7–16.  https://doi.org/10.1007/s10059-013-0140-8CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Eskelinen E-L, Saftig P (2009) Autophagy: a lysosomal degradation pathway with a central role in health and disease. Biochim Biophys Acta 1793:664–673.  https://doi.org/10.1016/j.bbamcr.2008.07.014CrossRefPubMedGoogle Scholar
  7. 7.
    Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147:728–741.  https://doi.org/10.1016/j.cell.2011.10.026CrossRefGoogle Scholar
  8. 8.
    Yoshii SR, Mizushima N (2017) Monitoring and measuring autophagy. Int J Mol Sci 18:1865.  https://doi.org/10.3390/ijms18091865CrossRefPubMedCentralGoogle Scholar
  9. 9.
    Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451:1069CrossRefGoogle Scholar
  10. 10.
    Longatti A, Tooze SA (2009) Vesicular trafficking and autophagosome formation. Cell Death Differ 16:956–965.  https://doi.org/10.1038/cdd.2009.39CrossRefPubMedGoogle Scholar
  11. 11.
    Mizushima N, Yoshimori T, Levine B (2010) Methods in mammalian autophagy research. Cell 140:313–326.  https://doi.org/10.1016/j.cell.2010.01.028CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kabeya Y, Mizushima N, Ueno T et al (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19:5720–5728.  https://doi.org/10.1093/emboj/19.21.5720CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Tanida I, Minematsu-Ikeguchi N, Ueno T, Kominami E (2005) Lysosomal turnover, but not a cellular level, of endogenous LC3 is a marker for autophagy. Autophagy 1:84–91CrossRefGoogle Scholar
  14. 14.
    Rubinsztein DC, Cuervo AM, Ravikumar B et al (2009) In search of an autophagomometer. Autophagy 5:585–589.  https://doi.org/10.4161/auto.5.5.8823CrossRefPubMedGoogle Scholar
  15. 15.
    Lamark T, Kirkin V, Dikic I, Johansen T (2009) NBR1 and p62 as cargo receptors for selective autophagy of ubiquitinated targets. Cell Cycle 8:1986–1990.  https://doi.org/10.4161/cc.8.13.8892CrossRefPubMedGoogle Scholar
  16. 16.
    Bjorkoy G, Lamark T, Brech A et al (2005) p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 171:603–614.  https://doi.org/10.1083/jcb.200507002CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Myeku N, Figueiredo-Pereira ME (2011) Dynamics of the degradation of ubiquitinated proteins by proteasomes and autophagy: association with sequestosome 1/p62. J Biol Chem 286:22426–22440.  https://doi.org/10.1074/jbc.M110.149252CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Puissant A, Fenouille N, Auberger P (2012) When autophagy meets cancer through p62/SQSTM1. Am J Cancer Res 2:397–413PubMedPubMedCentralGoogle Scholar
  19. 19.
    Liu WJ, Ye L, Huang WF et al (2016) p62 links the autophagy pathway and the ubiquitin-proteasome system upon ubiquitinated protein degradation. Cell Mol Biol Lett 21:29.  https://doi.org/10.1186/s11658-016-0031-zCrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    He C, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67–93.  https://doi.org/10.1146/annurev-genet-102808-114910CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Klionsky DJ, Abeliovich H, Agostinis P et al (2008) Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4:151–175CrossRefGoogle Scholar
  22. 22.
    Krieg S, Lüscher B, Vervoorts J, Dohmen M (2018) Studying the role of AMPK in autophagy. In: Neumann D, Viollet B (eds) AMPK: methods and protocols. Springer New York, New York, NY, pp 373–391CrossRefGoogle Scholar
  23. 23.
    Fulda S, Debatin KM (2006) Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 25:4798–4811.  https://doi.org/10.1038/sj.onc.1209608CrossRefPubMedGoogle Scholar
  24. 24.
    Ouyang L, Shi Z, Zhao S et al (2012) Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Prolif 45:487–498.  https://doi.org/10.1111/j.1365-2184.2012.00845.xCrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Walker JM (1984) Gradient SDS polyacrylamide gel electrophoresis. Methods Mol Biol 1:57–61.  https://doi.org/10.1385/0-89603-062-8:57CrossRefPubMedGoogle Scholar
  26. 26.
    Mizushima N, Yoshimori T (2007) How to interpret LC3 immunoblotting. Autophagy 3:542–545CrossRefGoogle Scholar
  27. 27.
    Jiang P, Mizushima N (2015) LC3- and p62-based biochemical methods for the analysis of autophagy progression in mammalian cells. Methods 75:13–18.  https://doi.org/10.1016/j.ymeth.2014.11.021CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Sheyda Najafi
    • 1
  • Ehab M. Abo-Ali
    • 1
  • Vikas V. Dukhande
    • 1
    Email author
  1. 1.Department of Pharmaceutical Sciences, College of Pharmacy and Health SciencesSt. John’s UniversityQueensUSA

Personalised recommendations