Advertisement

Synthesis of PNA-Peptide Conjugates as Functional SNARE Protein Mimetics

  • Barbara E. Hubrich
  • Patrick M. Menzel
  • Benedikt Kugler
  • Ulf DiederichsenEmail author
Protocol
  • 116 Downloads
Part of the Methods in Molecular Biology book series (MIMB, volume 2105)

Abstract

PNA-peptide conjugates are versatile tools in chemical biology, which are employed in a variety of applications. Here, we present the synthesis of PNA-peptide conjugates that serve as SNARE protein-mimicking biooligomers. They resemble the structure of native SNARE proteins but exhibit a much simpler architecture. Incorporated into liposomes, they induce lipid mixing, so that they can be used to study the SNARE-mediated membrane fusion in a simplified setting in vitro. They consist of artificial SNARE recognition units made out of PNA oligomers, which are attached to the native linker and transmembrane domains of two neuronal SNAREs. The PNA-peptide conjugates are synthesized via solid-phase peptide synthesis in a continuous fashion starting with the peptide part, followed by assembly of the PNA recognition unit. On top, we describe a strategy to synthesize PNA-peptide conjugates in a fully automated fashion by using a peptide synthesizer.

Key words

Peptide nucleic acids PNA-peptide conjugates Membrane fusion SNARE protein mimetics Solid-phase peptide synthesis 

Notes

Acknowledgments

We gratefully acknowledge generous support from the Deutsche Forschungsgemeinschaft in the context of the SFB 803 (project B05).

References

  1. 1.
    Jahn R, Scheller RH (2006) SNAREs—engines for membrane fusion. Nat Rev Mol Cell Biol 7(9):631–643CrossRefGoogle Scholar
  2. 2.
    Oyler GA (1989) The identification of a novel synaptosomal-associated protein, SNAP-25, differentially expressed by neuronal subpopulations. J Cell Biol 109(6):3039–3052CrossRefGoogle Scholar
  3. 3.
    Sutton RB, Fasshauer D, Jahn R et al (1998) Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution. Nature 395(6700):347–353CrossRefGoogle Scholar
  4. 4.
    Pobbati AV, Stein A, Fasshauer D (2006) N- to C-terminal SNARE complex assembly promotes rapid membrane fusion. Science 313(5787):673–676CrossRefGoogle Scholar
  5. 5.
    Li F, Kümmel D, Coleman J et al (2014) A half-zippered SNARE complex represents a functional intermediate in membrane fusion. J Am Chem Soc 136(9):3456–3464CrossRefGoogle Scholar
  6. 6.
    Gao Y, Zorman S, Gundersen G et al (2012) Single reconstituted neuronal SNARE complexes zipper in three distinct stages. Science 337(6100):1340–1343CrossRefGoogle Scholar
  7. 7.
    Zorman S, Rebane AA, Ma L et al (2014) Common intermediates and kinetics, but different energetics, in the assembly of SNARE proteins. Elife 3:e03348CrossRefGoogle Scholar
  8. 8.
    Jahn R, Fasshauer D (2012) Molecular machines governing exocytosis of synaptic vesicles. Nature 490(7419):201–207CrossRefGoogle Scholar
  9. 9.
    Rizo J (2018) Mechanism of neurotransmitter release coming into focus. Protein Sci 27(8):1364–1391CrossRefGoogle Scholar
  10. 10.
    Han J, Pluhackova K, Böckmann RA (2017) The multifaceted role of SNARE proteins in membrane fusion. Front Physiol 8:5CrossRefGoogle Scholar
  11. 11.
    Kumar P, Guha S, Diederichsen U (2015) SNARE protein analog-mediated membrane fusion. J Pept Sci 21(8):621–629CrossRefGoogle Scholar
  12. 12.
    Marsden HR, Tomatsu I, Kros A (2011) Model systems for membrane fusion. Chem Soc Rev 40(3):1572–1585CrossRefGoogle Scholar
  13. 13.
    Struck DK, Hoekstra D, Pagano RE (1981) Use of resonance energy transfer to monitor membrane fusion. Biochemistry 20(14):4093–4099CrossRefGoogle Scholar
  14. 14.
    Chan Y-HM, van Lengerich B, Boxer SG (2008) Lipid-anchored DNA mediates vesicle fusion as observed by lipid and content mixing. Biointerphases 3(2):FA17CrossRefGoogle Scholar
  15. 15.
    Stengel G, Simonsson L, Campbell RA et al (2008) Determinants for membrane fusion induced by cholesterol-modified DNA zippers. J Phys Chem B 112(28):8264–8274CrossRefGoogle Scholar
  16. 16.
    Ries O, Löffler PMG, Vogel S (2015) Convenient synthesis and application of versatile nucleic acid lipid membrane anchors in the assembly and fusion of liposomes. Org Biomol Chem 13(37):9673–9680CrossRefGoogle Scholar
  17. 17.
    Hubrich BE, Kumar P, Neitz H et al (2018) PNA hybrid sequences as recognition units in SNARE-protein-mimicking peptides. Angew Chem Int Ed Engl 57(45):14932–14936CrossRefGoogle Scholar
  18. 18.
    Lygina AS, Meyenberg K, Jahn R et al (2011) Transmembrane domain peptide/peptide nucleic acid hybrid as a model of a SNARE protein in vesicle fusion. Angew Chem Int Ed Engl 50(37):8597–8601CrossRefGoogle Scholar
  19. 19.
    Rabe A, Löffler PMG, Ries O et al (2017) Programmable fusion of liposomes mediated by lipidated PNA. Chem Commun 53(87):11921–11924CrossRefGoogle Scholar
  20. 20.
    Meyenberg K, Lygina AS, van den Bogaart G et al (2011) SNARE derived peptide mimic inducing membrane fusion. Chem Commun 47(33):9405–9407CrossRefGoogle Scholar
  21. 21.
    Marsden HR, Elbers NA, Bomans PHH et al (2009) A reduced SNARE model for membrane fusion. Angew Chem Int Ed Engl 48(13):2330–2333CrossRefGoogle Scholar
  22. 22.
    Sadek M, Berndt D, Milovanovic D et al (2016) Distance regulated vesicle fusion and docking mediated by β-peptide nucleic acid SNARE protein analogues. Chembiochem 17(6):479–485CrossRefGoogle Scholar
  23. 23.
    Egholm M, Buchardt O, Christensen L et al (1993) PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen-bonding rules. Nature 365(6446):566–568CrossRefGoogle Scholar
  24. 24.
    Nielsen PE, Egholm M (1999) An introduction to peptide nucleic acid. Curr Issues Mol Biol 1(2):89–104PubMedGoogle Scholar
  25. 25.
    Ngatchou AN, Kisler K, Fang Q et al (2010) Role of the synaptobrevin C terminus in fusion pore formation. Proc Natl Acad Sci U S A 107(43):18463–18468CrossRefGoogle Scholar
  26. 26.
    Langosch D, Hofmann M, Ungermann C (2007) The role of transmembrane domains in membrane fusion. Cell Mol Life Sci 64(7–8):850–864CrossRefGoogle Scholar
  27. 27.
    Chang C-W, Chiang C-W, Gaffaney JD et al (2016) Lipid-anchored synaptobrevin provides little or no support for exocytosis or liposome fusion. J Biol Chem 291(6):2848–2857CrossRefGoogle Scholar
  28. 28.
    Wehland J-D, Lygina AS, Kumar P et al (2016) Role of the transmembrane domain in SNARE protein mediated membrane fusion: peptide nucleic acid/peptide model systems. Mol Biosyst 12(9):2770–2776CrossRefGoogle Scholar
  29. 29.
    Chan WC, White PD (2000) Basic procedures. In: Chan WC, White PD (eds) Fmoc solid phase peptide synthesis – a practical approach, 1st edn. Oxford University Press, OxfordGoogle Scholar
  30. 30.
    Casale R, Jensen IS, Egholm M (2004) Synthesis of PNA oligomers by Fmoc chemistry. In: Nielsen PE (ed) Peptide nucleic acids – protocols and applications, 2nd edn. Horizon Bioscience, Wymondham, NorfolkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Barbara E. Hubrich
    • 1
  • Patrick M. Menzel
    • 1
  • Benedikt Kugler
    • 1
  • Ulf Diederichsen
    • 1
    Email author
  1. 1.Institute for Organic and Biomolecular ChemistryUniversity of GöttingenGöttingenGermany

Personalised recommendations