Advertisement

A Robust Method for Preparing Optically Pure MiniPEG-Containing Gamma PNA Monomers

  • Wei-Che Hsieh
  • Danith H. LyEmail author
Protocol
  • 130 Downloads
Part of the Methods in Molecular Biology book series (MIMB, volume 2105)

Abstract

We report the syntheses of chemical building blocks of a particular class of chiral PNAs, called miniPEG-containing (R)-gamma PNAs (or (R)-MPγPNAs). The strategy involves the application of 9-(4-bromophenyl)-9-fluorenyl as a temporary, safety-catch protecting group for the suppression of racemization in the alkylation and reductive amination steps. The methodology is general and robust, ideally suited for large-scale monomer productions with most synthetic steps providing excellent chemical yields without the need for purification other than a simple workup and precipitation.

Key words

Chiral PNAs Large-scale monomer productions Peptide nucleic acids miniPEG 

References

  1. 1.
    Nielsen PE, Egholm M, Berg RH, Buchardt O (1991) Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254(5037):1497–1500CrossRefGoogle Scholar
  2. 2.
    Nielsen PE (1999) Peptide nucleic acid. A molecule with two identities. Acc Chem Res 32:624–630CrossRefGoogle Scholar
  3. 3.
    Demidov VV, Potaman VN, Frank-Kamenetskii MD, Egholm M, Buchard O, Sonnichsen SH, Nielsen PE (1994) Stability of peptide nucleic acids in human serum and cellular extracts. Biochem Pharmacol 48(6):1310–1313CrossRefGoogle Scholar
  4. 4.
    Nielsen PE, Haaima G (1997) Peptide nucleic acid (PNA). A DNA mimic with a pseudopeptide backbone. Chem Soc Rev 26(2):73–78CrossRefGoogle Scholar
  5. 5.
    Kumar VA, Ganesh KN (2005) Conformationally constrained PNA analogues: structural evolution toward DNA/RNA binding selectivity. Acc Chem Res 38:404–412CrossRefGoogle Scholar
  6. 6.
    Corradini R, Sforza S, Tedeschi T, Marchelli R (2007) Chirality as a tool in nucleic acid recognition: principles and relevance in biotechnology and in medicinal chemistry. Chirality 19:269–294CrossRefGoogle Scholar
  7. 7.
    Hyrup B, Egholm M, Buchardt O, Nielsen PE (1996) A flexible and positively charged PNA analog with an ethylene-linker to the nucleobase: synthesis and hybridization properties. Bioorg Med Chem Lett 6:1083–1088CrossRefGoogle Scholar
  8. 8.
    Hyrup B, Egholm M, Nielsen PE, Wittung P, Norden B, Buchardt O (1994) Structure-activity studies of the binding of modified peptide nucleic acids (PNAs) to DNA. J Am Chem Soc 116(18):7964–7970CrossRefGoogle Scholar
  9. 9.
    Dragulescu-Andrasi A, Rapireddy S, Frezza BM, Gayathri C, Gil RR, Ly DH (2006) A simple gamma-backbone modification preorganizes peptide nucleic acid into a helical structure. J Am Chem Soc 128:10258–10267CrossRefGoogle Scholar
  10. 10.
    Rapireddy S, He G, Roy S, Armitage BA, Ly DH (2007) Strand invasion of mixed-sequence B-DNA by acridine-linked, gamma-peptide nucleic acid (gamma-PNA). J Am Chem Soc 129:15596–15600CrossRefGoogle Scholar
  11. 11.
    Bahal R, Sahu B, Rapireddy S, Lee C-M, Ly DH (2012) Sequence-unrestricted, Watson-Crick recognition of double helical B-DNA by (R)-MiniPEG-gPNAs. Chembiochem 13:56–60CrossRefGoogle Scholar
  12. 12.
    Sacui I, Hsieh W-C, Manna A, Sahu B, Ly DH (2015) Gamma peptide nucleic acids: as orthogonal nucleic acid recognition codes for organizing molecular self-assembly. J Am Chem Soc 137:8603–8610CrossRefGoogle Scholar
  13. 13.
    Hsieh W-C, Martinez GR, Wang AH-J, Wu SF, Chamdia R, Ly DH (2018) Stereochemical conversion of nucleic acid circuits via strand displacement. Commun Chem 1:89CrossRefGoogle Scholar
  14. 14.
    Sahu B, Sacui I, Rapireddy S, Zanotti KJ, Bahal R, Armitage BA, Ly DH (2011) Synthesis and characterization of conformationally preorganized, (R)-diethylene glycol-containing g-peptide nucleic acids with superior hybridization properties and water solubility. J Org Chem 76:5614–5627CrossRefGoogle Scholar
  15. 15.
    Singer A, Rapireddy S, Ly DH, Meller A (2012) Electronic barcoding of a viral gene at the single-molecule level. Nano Lett 12:1722–1728CrossRefGoogle Scholar
  16. 16.
    Bahal R, McNeer NA, Quijano E, Liu Y, Sulkowski P, Bhunia DC, Manna A, Greiner DL, Brehm MA, Cheng CJ, Lopez-Giraldez F, Beloor J, Krause DS, Kumar P, Gallagher PG, Braddock D, Saltzman WM, Ly DH, Glazer PM (2016) In vivo correction of anemia in b-thalassemic mice by yPNA-mediated gene editing with nanoparticle delivery. Nat Commun 7:13304CrossRefGoogle Scholar
  17. 17.
    Ricciadi AS, Bahal R, Farrelly JS, Quijano E, Bianchi AH, Luks VL, Putman R, Lopez-Giraldez F, Coskun S, Song E, Liu Y, Hsieh W-C, Ly DH, Stitelman DH, Glazer PM, Saltzman WM (2018) In utero nanoparticle delivery for site-specific genome editing. Nat Commun 9:2481CrossRefGoogle Scholar
  18. 18.
    Asahina Y, Takei M, Kimura T, Fukuda Y (2008) Synthesis and antibacterial activity of novel pyrido[1,2,3-de][1,4]benzoxazine-6-carboxylic acid derivatives carrying the 3-cyclopropylaminomethyl-4-substituted-1-pyrrolidinyl group as a C-10 substituent. J Med Chem 51:3238–3249CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Institute for Biomolecular Design and Discovery (IBD)Carnegie Mellon UniversityPittsburghUSA
  2. 2.Department of ChemistryCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations