Advertisement

RNA Chaperones pp 151-159 | Cite as

Detection of MicroRNAs Released from Argonautes

  • Kyung-Won Min
  • J. Grayson Evans
  • Erick C. Won
  • Je-Hyun YoonEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2106)

Abstract

The Argonaute (AGO) family of proteins plays an essential role in the process of microRNA (miRNA)-mediated gene silencing. More specifically, they are the only known proteins to associate directly with miRNAs within the RNA-induced silencing complex (RISC). Given the importance of miRNA regulation of the transcriptome and its vast implications for human disease, it is essential to understand the molecular underpinnings of miRNA-AGO interactions. Although there are methods available to investigate mature miRNA decay and loading onto AGO2, no feasible method exists to detail the opposite process: release of miRNA from associated AGO proteins. In this chapter, we describe in detail a methodology derived from biochemical approaches, which can be used to quantify the release of any given miRNA from AGOs.

Key words

miRNA Argonautes RBP Ribonucleoprotein complexes qPCR miRNA release 

Notes

Acknowledgments

Medical University of South Carolina and Hollings Cancer Center to J.H.Y. 2019 Academic Research Support Program in Gangneung-Wonju National University to K.W.M

References

  1. 1.
    Wu E et al (2017) A continuum of mRNP complexes in embryonic microRNA-mediated silencing. Nucleic Acids Res 45(4):2081–2098PubMedGoogle Scholar
  2. 2.
    Gehring NH, Wahle E, Fischer U (2017) Deciphering the mRNP Code: RNA-bound determinants of post-transcriptional gene regulation. Trends Biochem Sci 42:369–382CrossRefGoogle Scholar
  3. 3.
    Bartel DP (2018) Metazoan microRNAs. Cell 173:20–51CrossRefGoogle Scholar
  4. 4.
    Jonas S, Izaurralde E (2015) Towards a molecular understanding of microRNA-mediated gene silencing. Nat Rev Genet 16:421–433CrossRefGoogle Scholar
  5. 5.
    Pasquinelli AE (2012) MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet 13:271CrossRefGoogle Scholar
  6. 6.
    Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15:509–524CrossRefGoogle Scholar
  7. 7.
    Kwon SC et al (2016) Structure of human DROSHA. Cell 164:81–90CrossRefGoogle Scholar
  8. 8.
    Nguyen TA, Park J, Dang TL, Choi Y-G, Kim VN (2018) Microprocessor depends on hemin to recognize the apical loop of primary microRNA. Nucleic Acids Res 46(11):5726–5736CrossRefGoogle Scholar
  9. 9.
    Lee Y et al (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425:415CrossRefGoogle Scholar
  10. 10.
    Han J et al (2004) The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev 18:3016–3027CrossRefGoogle Scholar
  11. 11.
    Yi R, Qin Y, Macara IG, Cullen BR (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17:3011–3016CrossRefGoogle Scholar
  12. 12.
    Bohnsack MT, Czaplinski K, Gorlich D (2004) Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 10:185–191CrossRefGoogle Scholar
  13. 13.
    Zeng Y, Cullen BR (2004) Structural requirements for pre-microRNA binding and nuclear export by Exportin 5. Nucleic Acids Res 32:4776–4785CrossRefGoogle Scholar
  14. 14.
    Hutvágner G et al (2001) A cellular function for the RNA-interference enzyme dicer in the maturation of the let-7 small temporal RNA. Science 293:834–838CrossRefGoogle Scholar
  15. 15.
    Park J-E et al (2011) Dicer recognizes the 5′ end of RNA for efficient and accurate processing. Nature 475:201CrossRefGoogle Scholar
  16. 16.
    Tian Y et al (2014) A phosphate-binding pocket within the platform-PAZ-connector helix cassette of human dicer. Mol Cell 53:606–616CrossRefGoogle Scholar
  17. 17.
    Iwasaki S et al (2010) Hsc70/Hsp90 chaperone machinery mediates ATP-dependent RISC loading of small RNA duplexes. Mol Cell 39:292–299CrossRefGoogle Scholar
  18. 18.
    Naruse K, Matsuura-Suzuki E, Watanabe M, Iwasaki S, Tomari Y (2018) In vitro reconstitution of chaperone-mediated human RISC assembly. RNA 24:6–11CrossRefGoogle Scholar
  19. 19.
    Matranga C, Tomari Y, Shin C, Bartel DP, Zamore PD (2005) Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell 123:607–620CrossRefGoogle Scholar
  20. 20.
    Okamura K, Liu N, Lai EC (2009) Distinct mechanisms for microRNA strand selection by Drosophila Argonautes. Mol Cell 36:431–444CrossRefGoogle Scholar
  21. 21.
    Jo MH et al (2015) Human Argonaute 2 has diverse reaction pathways on target RNAs. Mol Cell 59:117–124CrossRefGoogle Scholar
  22. 22.
    Yao C, Sasaki HM, Ueda T, Tomari Y, Tadakuma H (2015) Single-molecule analysis of the target cleavage reaction by the Drosophila RNAi enzyme complex. Mol Cell 59:125–132CrossRefGoogle Scholar
  23. 23.
    Salomon WE, Jolly SM, Moore MJ, Zamore PD, Serebrov V (2015) Single-molecule imaging reveals that Argonaute reshapes the binding properties of its nucleic acid guides. Cell 162:84–95CrossRefGoogle Scholar
  24. 24.
    Chandradoss SD, Schirle NT, Szczepaniak M, MacRae IJ, Joo CA (2015) Dynamic search process underlies microRNA targeting. Cell 162:96–107CrossRefGoogle Scholar
  25. 25.
    Fabian MR, Sonenberg N (2012) The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC. Nat Struct Mol Biol 19:586–593CrossRefGoogle Scholar
  26. 26.
    Huntzinger E, Izaurralde E (2011) Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 12:99–110CrossRefGoogle Scholar
  27. 27.
    Nakanishi K (2016) Anatomy of RISC: how do small RNAs and chaperones activate Argonaute proteins? Wiley Interdiscip Rev RNA 7:637–660CrossRefGoogle Scholar
  28. 28.
    Janas MM et al (2012) Alternative RISC assembly: binding and repression of microRNA–mRNA duplexes by human Ago proteins. RNA 18:2041–2055CrossRefGoogle Scholar
  29. 29.
    Yoon J-H et al (2013) Scaffold function of long non-coding RNA HOTAIR in protein ubiquitination. Nat Commun 4:2939CrossRefGoogle Scholar
  30. 30.
    Yoon JH et al (2015) AUF1 promotes let-7b loading on Argonaute 2. Genes Dev 29:1599–1604CrossRefGoogle Scholar
  31. 31.
    Min KW et al (2017) AUF1 facilitates microRNA-mediated gene silencing. Nucleic Acids Res 45(10):6064–6073CrossRefGoogle Scholar
  32. 32.
    Zealy RW, Wrenn SP, Davila S, Min K-W, Yoon J-H (2017) microRNA-binding proteins: specificity and function. Wiley Interdiscip Rev RNA 8:e1414CrossRefGoogle Scholar
  33. 33.
    Baccarini A et al (2011) Kinetic analysis reveals the fate of a microRNA following target regulation in mammalian cells. Curr Biol 21:369–376CrossRefGoogle Scholar
  34. 34.
    Golden RJ et al (2017) An Argonaute phosphorylation cycle promotes microRNA-mediated silencing. Nature 542:197–202CrossRefGoogle Scholar
  35. 35.
    Shurtleff MJ, Temoche-Diaz MM, Karfilis KV, Ri S, Schekman R (2016) Y-box protein 1 is required to sort microRNAs into exosomes in cells and in a cell-free reaction. eLife 5:e19276CrossRefGoogle Scholar
  36. 36.
    Choi YJ, Yoon J-H, Chang JH (2016) Crystal structure of the N-terminal RNA recognition motif of mRNA decay regulator AUF1. Biomed Res Int 2016:9Google Scholar
  37. 37.
    Kota V et al (2016) SUMO-modification of the La protein facilitates binding to mRNA in vitro and in cells. PLoS One 11:e0156365CrossRefGoogle Scholar
  38. 38.
    Jee D, Lai EC (2014) Alteration of miRNA activity via context-specific modifications of Argonaute proteins. Trends Cell Biol 24:546–553CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Kyung-Won Min
    • 1
    • 2
  • J. Grayson Evans
    • 1
  • Erick C. Won
    • 1
  • Je-Hyun Yoon
    • 1
    Email author
  1. 1.Department of Biochemistry and Molecular BiologyMedical University of South CarolinaCharlestonUSA
  2. 2.Department of Biology, College of Natural SciencesGangneung-Wonju National UniversityGangneungSouth Korea

Personalised recommendations