Specific Nucleic Acid Chaperone Activity of HIV-1 Nucleocapsid Protein Deduced from Hairpin Unfolding

  • Micah J. McCauley
  • Ioulia Rouzina
  • Mark C. WilliamsEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 2106)


RNA and DNA hairpin formation and disruption play key regulatory roles in a variety of cellular processes. The 59-nucleotide transactivation response (TAR) RNA hairpin facilitates the production of full-length transcripts of the HIV-1 genome. Yet the stability of this long, irregular hairpin becomes a liability during reverse transcription as 24 base pairs must be disrupted for strand transfer. Retroviral nucleocapsid (NC) proteins serve as nucleic acid chaperones that have been shown to both destabilize the TAR hairpin and facilitate strand annealing with its complementary DNA sequence. Yet it has remained difficult to elucidate the way NC targets and dramatically destabilizes this hairpin while only weakly affecting the annealed product. In this work, we used optical tweezers to measure the stability of TAR and found that adding NC destabilized the hairpin and simultaneously caused a distinct change in both the height and location of the energy barrier. This data was matched to an energy landscape predicted from a simple theory of definite base pair destabilization. Comparisons revealed the specific binding sites found by NC along the irregular TAR hairpin. Furthermore, specific binding explained both the unusual shift in the transition state and the much weaker effect on the annealed product. These experiments illustrate a general method of energy landscape transformation that exposes important physical insights.

Key words

Energy landscape Transition state Nucleic acid hairpin Reverse transcription Optical tweezers Nucleic acid-protein interactions Mfold 



This work was supported by grants NIH GM072462 and NSF MCB-1817712 to M.C.W.


  1. 1.
    Cech TR, Zaug AJ, Grabowski PJ (1981) In vitro splicing of the ribosomal RNA precursor of Tetrahymena: involvement of a guanosine nucleotide in the excision of the intervening sequence. Cell 27(3 Pt 2):487–496PubMedGoogle Scholar
  2. 2.
    Li PT, Bustamante C, Tinoco I Jr (2006) Unusual mechanical stability of a minimal RNA kissing complex. Proc Natl Acad Sci U S A 103(43):15847–15852PubMedPubMedCentralGoogle Scholar
  3. 3.
    Liphardt J, Onoa B, Smith SB et al (2001) Reversible unfolding of single RNA molecules by mechanical force. Science 292(5517):733–737PubMedGoogle Scholar
  4. 4.
    Onoa B, Dumont S, Liphardt J et al (2003) Identifying kinetic barriers to mechanical unfolding of the T. thermophila ribozyme. Science 299(5614):1892–1895PubMedPubMedCentralGoogle Scholar
  5. 5.
    Anthony PC, Perez CF, García-García C et al (2012) Folding energy landscape of the thiamine pyrophosphate riboswitch aptamer. Proc Natl Acad Sci U S A 109(5):1485–1489PubMedPubMedCentralGoogle Scholar
  6. 6.
    Greenleaf WJ, Frieda KL, Foster DAN et al (2008) Direct observation of hierarchical folding in single riboswitch aptamers. Science 319(5863):630–633PubMedPubMedCentralGoogle Scholar
  7. 7.
    Woodside MT, Behnke-Parks WM, Larizadeh K et al (2006) Nanomechanical measurements of the sequence-dependent folding landscapes of single nucleic acid hairpins. Proc Natl Acad Sci U S A 103(16):6190–6195PubMedPubMedCentralGoogle Scholar
  8. 8.
    Koirala D, Dhakal S, Ashbridge B et al (2011) A single-molecule platform for investigation of interactions between G-quadruplexes and small-molecule ligands. Nat Chem 3(10):782–787PubMedPubMedCentralGoogle Scholar
  9. 9.
    Markham NR, Zuker M (2008) UNAFold: software for nucleic acid folding and hybridization. Methods Mol Biol 453:3–31PubMedGoogle Scholar
  10. 10.
    Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31(13):3406–3415PubMedPubMedCentralGoogle Scholar
  11. 11.
    Berkhout B, Jeang KT (1992) Functional roles for the TATA promoter and enhancers in basal and Tat-induced expression of the human immunodeficiency virus type 1 long terminal repeat. J Virol 66(1):139–149PubMedPubMedCentralGoogle Scholar
  12. 12.
    Levin JG, Guo J, Rouzina I et al (2005) Nucleic acid chaperone activity of HIV-1 nucleocapsid protein: critical role in reverse transcription and molecular mechanism. Prog Nucleic Acid Res Mol Biol 80:217–286PubMedGoogle Scholar
  13. 13.
    Cruceanu M, Gorelick RJ, Musier-Forsyth K et al (2006) Rapid kinetics of protein-nucleic acid interaction is a major component of HIV-1 nucleocapsid protein’s nucleic acid chaperone function. J Mol Biol 363(5):867–877PubMedGoogle Scholar
  14. 14.
    Wu H, Mitra M, McCauley MJ et al (2013) Aromatic residue mutations reveal direct correlation between HIV-1 nucleocapsid protein’s nucleic acid chaperone activity and retroviral replication. Virus Res 171(2):263–277PubMedGoogle Scholar
  15. 15.
    Thomas JA, Gorelick RJ (2008) Nucleocapsid protein function in early infection processes. Virus Res 134(1):39–63PubMedPubMedCentralGoogle Scholar
  16. 16.
    Darlix J-L, Lapadat-Tapolsky M, de Rocquigny H et al (1995) First glimpses at structure-function relationships of the nucleocapsid protein of retroviruses. J Mol Biol 254(4):523–537PubMedGoogle Scholar
  17. 17.
    Lapadat-Tapolsky M, de Rocquigny H, Van Gent D et al (1993) Interaction between HIV-1 nucleocapsid protein and viral DNA may have important functions in the viral life cycle. Nucleic Acids Res 21(4):831–839PubMedPubMedCentralGoogle Scholar
  18. 18.
    Lapadat-Tapolsky M, Pernelle C, Borie C et al (1995) Analysis of the nucleic acid annealing activities of nucleocapsid protein from HIV-1. Nucleic Acids Res 23(13):2434–2441PubMedPubMedCentralGoogle Scholar
  19. 19.
    Vo MN, Barany G, Rouzina I et al (2006) Mechanistic studies of mini-TAR RNA/DNA annealing in the absence and presence of HIV-1 nucleocapsid protein. J Mol Biol 363(1):244–261PubMedGoogle Scholar
  20. 20.
    Rein A, Henderson LE, Levin JG (1998) Nucleic-acid-chaperone activity of retroviral nucleocapsid proteins: significance for viral replication. Trends Biochem Sci 23:297–301PubMedGoogle Scholar
  21. 21.
    Tsuchihashi Z, Brown PO (1994) DNA strand exchange and selective DNA annealing promoted by the human immunodeficiency virus type 1 nucleocapsid protein. J Virol 68:5863–5870PubMedPubMedCentralGoogle Scholar
  22. 22.
    McCauley MJ, Rouzina I, Williams MC (2018) Constructing free energy landscapes of nucleic acid hairpin unfolding. Methods Mol Biol 1811:315–332PubMedGoogle Scholar
  23. 23.
    McCauley MJ, Rouzina I, Manthei KA et al (2015) Targeted binding of nucleocapsid protein transforms the folding landscape of HIV-1 TAR RNA. Proc Natl Acad Sci U S A 112(44):13555–13560PubMedPubMedCentralGoogle Scholar
  24. 24.
    McCauley MJ, Furman L, Dietrich CA et al (2018) Quantifying the stability of oxidatively damaged DNA by single-molecule DNA stretching. Nucleic Acids Res 46(8):4033–4043PubMedPubMedCentralGoogle Scholar
  25. 25.
    Wu W, Henderson LE, Copeland TD et al (1996) Human immunodeficiency virus type 1 nucleocapsid protein reduces reverse transcriptase pausing at a secondary structure near the murine leukemia virus polypurine tract. J Virol 70:7132–7142PubMedPubMedCentralGoogle Scholar
  26. 26.
    Chaurasiya KR, Paramanathan T, McCauley MJ et al (2010) Biophysical characterization of DNA binding from single molecule force measurements. Phys Life Rev 7:299–341PubMedPubMedCentralGoogle Scholar
  27. 27.
    McCauley MJ, Williams MC (2009) Optical tweezers experiments resolve distinct modes of DNA-protein binding. Biopolymers 91(4):265–282PubMedPubMedCentralGoogle Scholar
  28. 28.
    Li PT, Collin D, Smith SB et al (2006) Probing the mechanical folding kinetics of TAR RNA by hopping, force-jump, and force-ramp methods. Biophys J 90(1):250–260PubMedGoogle Scholar
  29. 29.
    Greenleaf WJ, Woodside MT, Abbondanzieri EA et al (2005) Passive all-optical force clamp for high-resolution laser trapping. Phys Rev Lett 95(20):208102PubMedPubMedCentralGoogle Scholar
  30. 30.
    Neuman KC, Nagy A (2008) Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat Methods 5(6):491–505PubMedPubMedCentralGoogle Scholar
  31. 31.
    Woodside MT, Block SM (2014) Reconstructing folding energy landscapes by single-molecule force spectroscopy. Annu Rev Biophys 43:19–39PubMedPubMedCentralGoogle Scholar
  32. 32.
    Hyeon C, Thirumalai D (2007) Mechanical unfolding of RNA: From hairpins to structures with internal multiloops. Biophys J 92(3):731–743PubMedGoogle Scholar
  33. 33.
    Dudko OK, Mathe J, Szabo A et al (2007) Extracting kinetics from single-molecule force spectroscopy: nanopore unzipping of DNA hairpins. Biophys J 92(12):4188–4195PubMedPubMedCentralGoogle Scholar
  34. 34.
    SantaLucia J (1998) A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc Natl Acad Sci U S A 95(4):1460–1465PubMedPubMedCentralGoogle Scholar
  35. 35.
    SantaLucia J Jr, Hicks D (2004) The thermodynamics of DNA structural motifs. Annu Rev Biophys Biomol Struct 33:415–440PubMedGoogle Scholar
  36. 36.
    Vieregg J, Cheng W, Bustamante C et al (2007) Measurement of the effect of monovalent cations on RNA hairpin stability. J Am Chem Soc 129(48):14966–14973PubMedPubMedCentralGoogle Scholar
  37. 37.
    Stephenson W, Keller S, Santiago R et al (2014) Combining temperature and force to study folding of an RNA hairpin. Phys Chem Chem Phys 16(3):906–917PubMedGoogle Scholar
  38. 38.
    Pierse CA, Dudko OK (2017) Distinguishing signatures of multipathway conformational transitions. Phys Rev Lett 118(8):088101PubMedPubMedCentralGoogle Scholar
  39. 39.
    Li PT, Bustamante C, Tinoco I Jr (2007) Real-time control of the energy landscape by force directs the folding of RNA molecules. Proc Natl Acad Sci U S A 104(17):7039–7044PubMedPubMedCentralGoogle Scholar
  40. 40.
    Yang D, Ward A, Halvorsen K et al (2016) Multiplexed single-molecule force spectroscopy using a centrifuge. Nat Commun 7:11026PubMedPubMedCentralGoogle Scholar
  41. 41.
    Wenner JR, Williams MC, Rouzina I et al (2002) Salt dependence of the elasticity and overstretching transition of single DNA molecules. Biophys J 82(6):3160–3169PubMedPubMedCentralGoogle Scholar
  42. 42.
    Dudko OK, Hummer G, Szabo A (2008) Theory, analysis, and interpretation of single-molecule force spectroscopy experiments. Proc Natl Acad Sci U S A 105(41):15755–15760PubMedPubMedCentralGoogle Scholar
  43. 43.
    Smith S, Finzi L, Bustamante C (1992) Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science 258(5085):1122–1126PubMedGoogle Scholar
  44. 44.
    Seol Y, Li J, Nelson PC et al (2007) Elasticity of short DNA molecules: theory and experiment for contour lengths of 0.6–7 microns. Biophys J 93(12):4360–4373PubMedPubMedCentralGoogle Scholar
  45. 45.
    Jones CP, Datta SA, Rein A et al (2011) Matrix domain modulates HIV-1 Gag’s nucleic acid chaperone activity via inositol phosphate binding. J Virol 85(4):1594–1603PubMedGoogle Scholar
  46. 46.
    Webb JA, Jones CP, Parent LJ et al (2013) Distinct binding interactions of HIV-1 Gag to Psi and non-Psi RNAs: implications for viral genomic RNA packaging. RNA 19(8):1078–1088PubMedPubMedCentralGoogle Scholar
  47. 47.
    Crooks GE (1999) Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. Phys Rev E 60(3):2721–2726Google Scholar
  48. 48.
    Bennett CH (1976) Efficient estimation of free energy differences from Monte Carlo data. J Comp Phys 22(2):245–268Google Scholar
  49. 49.
    Bell G (1978) Models for the specific adhesion of cells to cells. Science 200(4342):618–627PubMedGoogle Scholar
  50. 50.
    Dudko OK, Hummer G, Szabo A (2006) Intrinsic rates and activation free energies from single-molecule pulling experiments. Phys Rev Lett 96(10):108101PubMedGoogle Scholar
  51. 51.
    Godet J, Kenfack C, Przybilla F et al (2013) Site-selective probing of cTAR destabilization highlights the necessary plasticity of the HIV-1 nucleocapsid protein to chaperone the first strand transfer. Nucleic Acids Res 41(9):5036–5048PubMedPubMedCentralGoogle Scholar
  52. 52.
    Wilkinson KA, Gorelick RJ, Vasa SM et al (2008) High-throughput SHAPE analysis reveals structures in HIV-1 genomic RNA strongly conserved across distinct biological states. PLoS Biol 6(4):e96PubMedPubMedCentralGoogle Scholar
  53. 53.
    Cosa G, Harbron EJ, Zeng Y et al (2004) Secondary structure and secondary structure dynamics of DNA hairpins complexed with HIV-1 NC protein. Biophys J 87(4):2759–2767PubMedPubMedCentralGoogle Scholar
  54. 54.
    Gherghe C, Lombo T, Leonard CW et al (2010) Definition of a high-affinity Gag recognition structure mediating packaging of a retroviral RNA genome. Proc Natl Acad Sci U S A 107(45):19248–19253PubMedPubMedCentralGoogle Scholar
  55. 55.
    Miller SB, Yildiz FZ, Lo JA et al (2014) A structure-based mechanism for tRNA and retroviral RNA remodelling during primer annealing. Nature 515:591–595PubMedGoogle Scholar
  56. 56.
    de Guzman RN, Wu ZR, Stalling CC et al (1998) Structure of the HIV-1 nucleocapsid protein bound to the SL3 psi-RNA recognition element. Science 279:384–388PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Micah J. McCauley
    • 1
  • Ioulia Rouzina
    • 2
  • Mark C. Williams
    • 1
    Email author
  1. 1.Department of PhysicsNortheastern UniversityBostonUSA
  2. 2.Department of Chemistry and BiochemistryOhio State UniversityColumbusUSA

Personalised recommendations