Advertisement

Fast and Efficient Measurement of Clinical and Biological Samples Using Immunoassay-Based Multiplexing Systems

  • Yingze Zhang
  • Xiaoyun Li
  • Y. Peter DiEmail author
Protocol
  • 184 Downloads
Part of the Methods in Molecular Biology book series (MIMB, volume 2102)

Abstract

Immunoassay is one of the most commonly used biomedical techniques to detect the expression of an antibody or an antigen in a test sample. Enzyme-linked immunosorbent assay (ELISA) has been used for a variety of applications including diagnostic tools and quality controls. However, one of the main limitations of ELISA is its lack of multiplexing ability, so ELISA may not be an efficient diagnostic tool when a measurement of multiple determinants is needed for samples with limited quantity such as blood or biological samples from newborns or babies. Although similar to ELISA in assay measurement, multiplex platforms such as bead-based Luminex and multi-array-based MSD (Meso Scale Discovery) are widely used to measure multiple biomarkers from a single analysis. Luminex is a xMAP-based technology that combines several different technologies to provide an efficient and accurate measurement of multiple analytes from a single sample. The multiplexing can be achieved because up to 100 distinct Luminex color-coded microsphere bead sets can be coated with a reagent specific to a particular bioassay, allowing the capture and detection of specific analytes from a sample. Using Multi-array and electrochemiluminescence technologies, the MSD platform provides the multiplex capability with similar consistence as observed in ELISA. Various biological samples that can be analyzed by both Luminex and MSD systems include serum, plasma, tissue and cell lysate, saliva, sputum, and bronchoalveolar Lavage (BAL). The most common Luminex and MSD-based assays are to detect a combined set of cytokines to provide a measurement of cytokine expression profiling for a diagnostic purpose.

Key words

Luminex MSD Biomarker Biofluid Multiplex 

References

  1. 1.
    Barboni de Stella AM, Guida N, Del Rio Alonso L, Grimoldi F, Guisande AJ, Picos JA (1999) ELISA and the diagnosis of psittacosis-ornithosis. Rev Argent Microbiol 31(Suppl 1):33–34PubMedGoogle Scholar
  2. 2.
    Engvall E (1977) Quantitative enzyme immunoassay (ELISA) in microbiology. Med Biol 55:193–200PubMedGoogle Scholar
  3. 3.
    Itoh K, Suzuki T (2002) Antibody-guided selection using capture-sandwich ELISA. Methods Mol Biol 178:195–199PubMedGoogle Scholar
  4. 4.
    Peterson EM (1981) ELISA: a tool for the clinical microbiologist. Am J Med Technol 47:905–908PubMedGoogle Scholar
  5. 5.
    Voller A, Bartlett A, Bidwell DE (1978) Enzyme immunoassays with special reference to ELISA techniques. J Clin Pathol 31:507–520PubMedPubMedCentralGoogle Scholar
  6. 6.
    Voller A, Bidwell DE, Bartlett A (1982) ELISA techniques in virology. Lab Res Methods Biol Med 5:59–81PubMedGoogle Scholar
  7. 7.
    Yoshihara N (1995) ELISA for diagnosis of infections by viruses. Nippon Rinsho 53:2277–2282PubMedGoogle Scholar
  8. 8.
    Hernandez HJ, Longo IM, Peixinho ZF, Lacouture C, Mendes NF (1990) Third generation ELISA using a synthetic peptide to detect anti-HIV. A rapid and low-cost method. Medicina (B Aires) 50:87–88Google Scholar
  9. 9.
    Fawcett PT, Gibney KM, Doughty RA (1989) Glove powder and HIV ELISA tests. Lancet 1:1082–1083PubMedGoogle Scholar
  10. 10.
    Nuttall P, Pratt R, Nuttall L, Daly C (1986) False-positive results with HIV ELISA kits. Lancet 2:512–513PubMedGoogle Scholar
  11. 11.
    dupont NC, Wang K, Wadhwa PD, Culhane JF, Nelson EL (2005) Validation and comparison of luminex multiplex cytokine analysis kits with ELISA: determinations of a panel of nine cytokines in clinical sample culture supernatants. J Reprod Immunol 66:175–191PubMedPubMedCentralGoogle Scholar
  12. 12.
    Li YQ, Duan ZJ (2010) Application of Luminex xMAP technology in infectious diseases. Bing Du Xue Bao 26:158–161PubMedGoogle Scholar
  13. 13.
    Seideman J, Peritt D (2002) A novel monoclonal antibody screening method using the Luminex-100 microsphere system. J Immunol Methods 267:165–171PubMedGoogle Scholar
  14. 14.
    Lawson S, Lunney J, Zuckermann F et al (2010) Development of an 8-plex Luminex assay to detect swine cytokines for vaccine development: assessment of immunity after porcine reproductive and respiratory syndrome virus (PRRSV) vaccination. Vaccine 28:5356–5364PubMedGoogle Scholar
  15. 15.
    Djoba Siawaya JF, Roberts T, Babb C et al (2008) An evaluation of commercial fluorescent bead-based luminex cytokine assays. PLoS One 3:e2535PubMedPubMedCentralGoogle Scholar
  16. 16.
    Lash GE, Scaife PJ, Innes BA et al (2006) Comparison of three multiplex cytokine analysis systems: Luminex, SearchLight and FAST Quant. J Immunol Methods 309:205–208PubMedGoogle Scholar
  17. 17.
    Liu MY, Xydakis AM, Hoogeveen RC et al (2005) Multiplexed analysis of biomarkers related to obesity and the metabolic syndrome in human plasma, using the Luminex-100 system. Clin Chem 51:1102–1109PubMedGoogle Scholar
  18. 18.
    Dehqanzada ZA, Storrer CE, Hueman MT et al (2007) Assessing serum cytokine profiles in breast cancer patients receiving a HER2/neu vaccine using Luminex technology. Oncol Rep 17:687–694PubMedGoogle Scholar
  19. 19.
    Datta SC, Opp MR (2008) Lipopolysaccharide-induced increases in cytokines in discrete mouse brain regions are detectable using Luminex xMAP technology. J Neurosci Methods 175:119–124PubMedPubMedCentralGoogle Scholar
  20. 20.
    Giavedoni LD (2005) Simultaneous detection of multiple cytokines and chemokines from nonhuman primates using luminex technology. J Immunol Methods 301:89–101PubMedGoogle Scholar
  21. 21.
    Szczepaniak WS, Zhang Y, Hagerty S et al (2008) Sphingosine 1-phosphate rescues canine LPS-induced acute lung injury and alters systemic inflammatory cytokine production in vivo. Transl Res 152:213–224PubMedPubMedCentralGoogle Scholar
  22. 22.
    Keyes KA, Mann L, Cox K et al (2003) Circulating angiogenic growth factor levels in mice bearing human tumors using Luminex Multiplex technology. Cancer Chemother Pharmacol 51:321–327PubMedGoogle Scholar
  23. 23.
    Dolezalova R, Lacinova Z, Dolinkova M et al (2007) Changes of endocrine function of adipose tissue in anorexia nervosa: comparison of circulating levels versus subcutaneous mRNA expression. Clin Endocrinol 67:674–678Google Scholar
  24. 24.
    Thrailkill KM, Moreau CS, Cockrell G et al (2005) Physiological matrix metalloproteinase concentrations in serum during childhood and adolescence, using Luminex Multiplex technology. Clin Chem Lab Med 43:1392–1399PubMedPubMedCentralGoogle Scholar
  25. 25.
    Dozmorov M, Wu W, Chakrabarty K et al (2009) Gene expression profiling of human alveolar macrophages infected by B. anthracis spores demonstrates TNF-alpha and NF-kappab are key components of the innate immune response to the pathogen. BMC Infect Dis 9:152PubMedPubMedCentralGoogle Scholar
  26. 26.
    Paradis FW, Simard R, Gaudet D (2010) Quantitative assay for the detection of the V617F variant in the Janus kinase 2 (JAK2) gene using the Luminex xMAP technology. BMC Med Genet 11:54PubMedPubMedCentralGoogle Scholar
  27. 27.
    Desai N, Wu H, George K, Gonda SR, Cucinotta FA (2004) Simultaneous measurement of multiple radiation-induced protein expression profiles using the Luminex(TM) system. Adv Space Res 34:1362–1367PubMedGoogle Scholar
  28. 28.
    Strom CM, Janeszco R, Quan F et al (2006) Technical validation of a TM biosciences Luminex-based multiplex assay for detecting the American college of medical genetics recommended cystic fibrosis mutation panel. J Mol Diagn 8:371–375PubMedPubMedCentralGoogle Scholar
  29. 29.
    Dunbar SA, Jacobson JW (2000) Application of the luminex LabMAP in rapid screening for mutations in the cystic fibrosis transmembrane conductance regulator gene: a pilot study. Clin Chem 46:1498–1500PubMedGoogle Scholar
  30. 30.
    Eng HS, Bennett G, Bardy P, Coghlan P, Russ GR, Coates PT (2009) Clinical significance of anti-HLA antibodies detected by Luminex: enhancing the interpretation of CDC-BXM and important post-transplantation monitoring tools. Hum Immunol 70:595–599PubMedGoogle Scholar
  31. 31.
    Cesbron-Gautier A, Simon P, Achard L, Cury S, Follea G, Bignon JD (2004) Luminex technology for HLA typing by PCR-SSO and identification of HLA antibody specificities. Ann Biol Clin (Paris) 62:93–98Google Scholar
  32. 32.
    Buliard A, Fortenfant F, Ghillani-Dalbin P, Musset L, Oksman F, Olsson NO (2005) Analysis of nine autoantibodies associated with systemic autoimmune diseases using the Luminex technology. Results of a multicenter study. Ann Biol Clin (Paris) 63:51–58Google Scholar
  33. 33.
    Cludts I, Meager A, Thorpe R, Wadhwa M (2010) Detection of neutralizing interleukin-17 antibodies in autoimmune polyendocrinopathy syndrome-1 (APS-1) patients using a novel non-cell based electrochemiluminescence assay. Cytokine 50:129–137PubMedGoogle Scholar
  34. 34.
    Pilyugin M, Descloux P, Andre PA et al (2017) BARD1 serum autoantibodies for the detection of lung cancer. PLoS One 12:e0182356PubMedPubMedCentralGoogle Scholar
  35. 35.
    Zhao Z, Miao D, Michels A et al (2016) A multiplex assay combining insulin, GAD, IA-2 and transglutaminase autoantibodies to facilitate screening for pre-type 1 diabetes and celiac disease. J Immunol Methods 430:28–32PubMedPubMedCentralGoogle Scholar
  36. 36.
    Hinke SA, Cieniewicz AM, Kirchner T et al (2018) Unique pharmacology of a novel allosteric agonist/sensitizer insulin receptor monoclonal antibody. Mol Metab 10:87–99PubMedPubMedCentralGoogle Scholar
  37. 37.
    Lu Y, Young J, Meng YG (2007) Electrochemiluminescence to detect surface proteins on live cells. Curr Opin Pharmacol 7:541–546PubMedGoogle Scholar
  38. 38.
    Pang S, Ahsan ES, Foy CA (2010) Improved detection of cell surface proteins using an electrochemiluminescent cell-binding assay. J Immunol Methods 362:176–179PubMedGoogle Scholar
  39. 39.
    Santulli-Marotto S, Gervais A, Fisher J et al (2015) Discovering molecules that regulate efferocytosis using primary human macrophages and high content imaging. PLoS One 10:e0145078PubMedPubMedCentralGoogle Scholar
  40. 40.
    Centola M, Cavet G, Shen Y et al (2013) Development of a multi-biomarker disease activity test for rheumatoid arthritis. PLoS One 8:e60635PubMedPubMedCentralGoogle Scholar
  41. 41.
    Shimizu Y, Furuya H, Bryant Greenwood P et al (2016) A multiplex immunoassay for the non-invasive detection of bladder cancer. J Transl Med 14:31PubMedPubMedCentralGoogle Scholar
  42. 42.
    Lee JS, Rosengart MR, Kondragunta V et al (2007) Inverse association of plasma IL-13 and inflammatory chemokines with lung function impairment in stable COPD: a cross-sectional cohort study. Respir Res 8:64PubMedPubMedCentralGoogle Scholar
  43. 43.
    Rosas IO, Richards TJ, Konishi K et al (2008) MMP1 and MMP7 as potential peripheral blood biomarkers in idiopathic pulmonary fibrosis. PLoS Med 5:e93PubMedPubMedCentralGoogle Scholar
  44. 44.
    Ajala O, Zhang Y, Gupta A, Bon J, Sciurba F, Chandra D (2018) Decreased serum TRAIL is associated with increased mortality in smokers with comorbid emphysema and coronary artery disease. Respir Med 145:21–27PubMedPubMedCentralGoogle Scholar
  45. 45.
    Bon J, Zhang Y, Leader JK et al (2018) Radiographic emphysema, circulating bone biomarkers, and progressive bone mineral density loss in smokers. Ann Am Thorac Soc 15:615–621PubMedPubMedCentralGoogle Scholar
  46. 46.
    Bon JM, Zhang Y, Duncan SR et al (2010) Plasma inflammatory mediators associated with bone metabolism in COPD. COPD 7:186–191PubMedPubMedCentralGoogle Scholar
  47. 47.
    Grace J, Leader JK, Nouraie SM et al (2017) Mediastinal and subcutaneous chest fat are differentially associated with emphysema progression and clinical outcomes in smokers. Respiration 94:501–509PubMedGoogle Scholar
  48. 48.
    Richards TJ, Kaminski N, Baribaud F et al (2012) Peripheral blood proteins predict mortality in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 185:67–76PubMedPubMedCentralGoogle Scholar
  49. 49.
    Bon JM, Leader JK, Weissfeld JL et al (2009) The influence of radiographic phenotype and smoking status on peripheral blood biomarker patterns in chronic obstructive pulmonary disease. PLoS One 4:e6865PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of MedicineUniversity of PittsburghPittsburghUSA
  2. 2.Department of Environmental and Occupational HealthUniversity of PittsburghPittsburghUSA

Personalised recommendations