Advertisement

Very Strong but Reversible Immobilization of Enzymes on Supports Coated with Ionic Polymers

  • Cesar Mateo
  • Benevides C. C. Pessela
  • Manuel Fuentes
  • Rodrigo Torres
  • Claudia Ortiz
  • Fernando López-Gallego
  • Lorena Betancor
  • Noelia Alonso-Morales
  • Jose M. Guisan
  • Roberto Fernandez-LafuenteEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2100)

Abstract

In this chapter, the properties of tailor-made anionic exchanger resins based on films of large polyethylenimine polymers (e.g., molecular weight 25,000) as supports for strong but reversible immobilization of proteins are shown. The polymer is completely coated, via covalent immobilization, the surface of different porous supports. Proteins can interact with this polymeric bed, involving a large percentage of the protein surface in the adsorption. Different enzymes have been very strongly adsorbed on these supports, retaining enzyme activities. On the other hand, adsorption is very strong and the derivatives may be used under a wide range of pH and ionic strengths. These supports may be useful even to stabilize multimeric enzymes, by involving several enzyme subunits in the immobilization.

Key words

Polymeric beds Volume effect Nondistorting but strong adsorption Reversible immobilization 

References

  1. 1.
    Rosevear A (1984) Immobilized biocatalysts: a critical review. J Chem Technol Biotechnol 34:127–150CrossRefGoogle Scholar
  2. 2.
    Royer GP (1980) Immobilized enzymes as catalysts. Catal Rev 22:29–73CrossRefGoogle Scholar
  3. 3.
    Klivanov AM (1983) Immobilized enzymes and cells as practical catalysts. Science 219:722–727CrossRefGoogle Scholar
  4. 4.
    Hartmeier W (1985) Immobilized biocatalysts: from simple to complex systems. Trends Biotechnol 3:149–153CrossRefGoogle Scholar
  5. 5.
    Kennedy JF, Melo EHM, Jumel K (1990) Immobilized enzymes and cells. Chem Eng Prog 45:81–89Google Scholar
  6. 6.
    Katchalski-Katzir E (1993) Immobilized enzymes: learning from past successes and failures. Trends Biotechnol 11:471–478CrossRefGoogle Scholar
  7. 7.
    Chibata I, Tosa T, Sato T (1986) Biocatalysis: immobilized cells and enzymes. J Mol Catal 37:1–24CrossRefGoogle Scholar
  8. 8.
    Gupta MN (1991) Thermostabilization of proteins. Biotechnol Appl Biochem 14:1–11Google Scholar
  9. 9.
    Mateo C, Abian O, Fernández-Lafuente R, Guisán JM (2000) Reversible enzyme immobilization via a very strong and nondistorting ionic adsorption on support Polyethylenimine supports. Biotechnol Bioeng 7:98–105CrossRefGoogle Scholar
  10. 10.
    Pessela BCC, Fernández-Lafuente R, Fuentes M, Vián A, García JL, Carrascosa AV, Mateo C, Guisán JM (2003) Reversible immobilization of a thermophilic β-galactosidase via ionic adsorption on PEI- coated sepabeads. Enzym Microb Technol 32:369–374CrossRefGoogle Scholar
  11. 11.
    Fuentes M, Maquiese J, Pessela BCC, Abian A, Fernández-Lafuente R, Mateo C, Guisán JM (2004) New cationic exchanger support for reversible immobilization of proteins. Biotechnol Prog 20:284–288CrossRefGoogle Scholar
  12. 12.
    Fuentes M, Pessela BCC, Maquiese JV, Ortiz C, Segura RL, Palomo JM, Abian O, Torres R, Mateo C, Fernández-Lafuente R, Guisán JM (2004) Reversible and strong immobilization of proteins by ionic exchange on supports coated with sulfate- dextran. Biotechnol Prog 20:1134–1139CrossRefGoogle Scholar
  13. 13.
    Virgen-Ortíz JJ, Dos Santos JCS, Berenguer-Murcia Á, Barbosa O, Rodrigues RC, Fernandez-Lafuente R (2017) Polyethylenimine: a very useful ionic polymer in the design of immobilized enzyme biocatalysts. J Mater Chem B 5(36):7461–7490CrossRefGoogle Scholar
  14. 14.
    Garcia-Galan C, Berenguer-Murcia A, Fernandez-Lafuente R, Rodrigues RC (2011) Potential of different enzyme immobilization strategies to improve enzyme performance. Adv Synth Catal 353(16):2885–2904CrossRefGoogle Scholar
  15. 15.
    Jesionowski T, Zdarta J, Krajewska B (2014) Enzyme immobilization by adsorption: a review. Adsorption 20(5-6):801–821CrossRefGoogle Scholar
  16. 16.
    Batista-Viera F, Barbieri M, Ovsejevi K, Manta C, Carlsson J (1991) A new method for reversible immobilization of thiol biomolecules based on solid-phase bound thiosulfonate groups. Appl Biochem Biotechnol 31:175–195CrossRefGoogle Scholar
  17. 17.
    Batista-Viera F, Brena B, Luna B (1988) Reversible immobilization of soybean amylase on phenylboronate-agarose. Biotechnol Bioeng 31:711–713CrossRefGoogle Scholar
  18. 18.
    Brena B, Ovsejevi K, Luna B, Batista-Viera F (1993) Thiolation and reversible immobilization of sweet potato amylase on thiosulfonate agarose. J Mol Catal 84:381–390CrossRefGoogle Scholar
  19. 19.
    Chibata I, Tosa T (1976) Industrial applications of immobilized enzymes and immobilized microbial cells. In: Applied biochemistry and bioengineering: immobilized enzyme principles, vol 1. Wingard, Katchalski, Goldstein, London, pp 239–260Google Scholar
  20. 20.
    Torres R, Pessela BCC, Mateo C, Ortiz C, Fuentes M, Guisán JM, Fernández-Lafuente R (2004) Reversible immobilization of glucoamylase by ionic adsorption on sepabeads coated with polyethyleneimine. Biotechnol Prog 20:1297–1300CrossRefGoogle Scholar
  21. 21.
    Tammi M, Ballou L, Taylor A, Ballou C (1987) Effect of glycosylation on yeast invertase oligomer stability. J Biol Chem 262:4395–4401PubMedGoogle Scholar
  22. 22.
    Chu FK, Watorek W, Maley F (1983) Factors affecting the oligomeric structure of yeast external invertase. Arch Biochem Biophys 223:543–555CrossRefGoogle Scholar
  23. 23.
    Reddy AV, MacColl R, Maley F (1990) Effect of oligosaccharides on oligomeric structures of external, internal and deglycosylated invertase. Biochemistry 29:2482–2487CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Cesar Mateo
    • 1
  • Benevides C. C. Pessela
    • 1
  • Manuel Fuentes
    • 1
  • Rodrigo Torres
    • 1
  • Claudia Ortiz
    • 1
  • Fernando López-Gallego
    • 2
    • 3
  • Lorena Betancor
    • 1
  • Noelia Alonso-Morales
    • 1
  • Jose M. Guisan
    • 1
  • Roberto Fernandez-Lafuente
    • 1
    Email author
  1. 1.Institute of Catalysis, CSIC, Campus UAM-CantoblancoMadridSpain
  2. 2.Department of BiocatalysisInstitute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAMMadridSpain
  3. 3.Departamento de Química Orgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) CSIC-Universidad de ZaragozaZaragozaSpain

Personalised recommendations