Advertisement

Parameters for the Evaluation of Immobilized Enzymes Under Process Conditions

  • Andrés Illanes
  • Lorena WilsonEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2100)

Abstract

The characterization of immobilized enzymes allows the evaluation of the immobilization process itself and also the projection of the immobilized enzyme performance under process operation conditions. Based on such characterization, strategies for support functionalization and enzyme immobilization into the activated support can be selected, determining the best conditions for conducting such steps in view of the intended use of the biocatalyst, establishing a linkage between biocatalyst production and biocatalyst use. The determination of the catalytic potential of the immobilized enzyme under operational conditions is a priceless parameter that takes into account both activity and stability, including the effect of both mass transfer limitations (diffusional restrictions) and intrinsic enzyme inactivation upon the immobilization process.

Key words

Immobilization yield Enzyme inactivation Inactivation mechanism Diffusional restrictions Catalytic potential 

References

  1. 1.
    Neidleman SL (1991) Historical perspective on the industrial uses of biocatalysts. In: Dordick JS (ed) Biocatalysts for industry. Plenum Press, New York, pp 21–33CrossRefGoogle Scholar
  2. 2.
    Johnson KA, Goody RS (2011) The original Michaelis constant: translation of the 1913 Michaelis-Menten paper. Biochemistry 50:8264–8269CrossRefGoogle Scholar
  3. 3.
    Illanes A (1999) Stability of biocatalysts. Electron J Biotechnol 2:1–9CrossRefGoogle Scholar
  4. 4.
    Madhavan A, Sindhu R, Binod P et al (2017) Strategies for design of improved biocatalysts for industrial applications. Bioresour Technol 245:1304–1313CrossRefGoogle Scholar
  5. 5.
    Singh RK, Tiwari MK, Singh R et al (2013) From protein engineering to immobilization: promising strategies for the upgrade of industrial enzymes. Int J Mol Sci 14:1232–1277CrossRefGoogle Scholar
  6. 6.
    Bernal C, Rodríguez K, Martínez R (2018) Integrating enzyme immobilization and protein engineering: an alternative path for the development of novel improved biocatalysts. Biotechnol Adv 36:1470–1480CrossRefGoogle Scholar
  7. 7.
    Nelson JM, Griffin EG (1916) Adsorption of invertase. J Am Chem Soc 38:1109–1115CrossRefGoogle Scholar
  8. 8.
    Chibata I, Tosa T, Sato T (1987) Application of immobilized biocatalysts in pharmaceutical and chemical industries. In: Rehm HJ, Reed G (eds) Biotechnology, vol 7a. Verlag Chemie, Weinhein, pp 653–684Google Scholar
  9. 9.
    Sheldon RA, Brady D (2018) The limits to biocatalysis: pushing the envelope. Chem Commun 54:6088–6104CrossRefGoogle Scholar
  10. 10.
    Velasco-Lozano S, López-Gallego F (2018) Wiring step-wise reactions with immobilized multi-enzyme systems. Biocatal Biotransformation 36:184–194CrossRefGoogle Scholar
  11. 11.
    Bolivar JM, Gascon V, Marquez-Alvarez C et al (2017) Oriented coimmobilization of oxidase and catalase on tailor-made ordered mesoporous silica. Langmuir 33:5065–5076CrossRefGoogle Scholar
  12. 12.
    Sheldon RA, van Pelt S (2013) Enzyme immobilisation in biocatalysis: why, what and how. Chem Soc Rev 42:6223–6235CrossRefGoogle Scholar
  13. 13.
    Homaei AA, Sariri R, Vianello F et al (2013) Enzyme immobilization: An update. J Chem Biol 6:185–205CrossRefGoogle Scholar
  14. 14.
    Betancor L, Luckarift HR (2008) Bioinspired enzyme encapsulation for biocatalysis. Trends Biotechnol 26:566–572CrossRefGoogle Scholar
  15. 15.
    Mateo C, Palomo JM, Fernandez-Lorente G et al (2007) Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb Technol 40:1451–1463CrossRefGoogle Scholar
  16. 16.
    Polakovic M, Vrábel P (1996) Analysis of the mechanism and kinetics of thermal inactivation of enzymes: critical assessment of isothermal inactivation experiments. Process Biochem 8:787–800CrossRefGoogle Scholar
  17. 17.
    Sadana A, Henley JP (1987) Single-step unimolecular non-first-order enzyme deactivation kinetics. Biotechnol Bioeng 30:717–723CrossRefGoogle Scholar
  18. 18.
    Henley JP, Sadana A (1986) Deactivation theory. Biotechnol Bioeng 28:1277–12851CrossRefGoogle Scholar
  19. 19.
    Henley JP, Sadana A (1985) Categorization of enzyme deactivations using a series-type mechanism. Enzyme Microb Technol 7:50–60CrossRefGoogle Scholar
  20. 20.
    Illanes A, Wilson L (2003) Enzyme reactor design under thermal inactivation. Crit Rev Biotechnol 23:61–93CrossRefGoogle Scholar
  21. 21.
    Michaelis L, Menten M (1913) Die kinetik der Invertinwirkung. Biochem Z 49:333–369Google Scholar
  22. 22.
    Briggs GE, Haldane JBS (1925) A note on the kinetics of enzyme action. Biochem J 19:338–339PubMedPubMedCentralGoogle Scholar
  23. 23.
    Palomo JM, Guisan JM (2012) Different strategies for hyperactivation of lipase biocatalysts. Methods Mol Biol 861:329–341CrossRefGoogle Scholar
  24. 24.
    Illanes A (ed) (2014) Problem solving in enzyme biocatalysis. Wiley, United KingdomGoogle Scholar
  25. 25.
    Illanes A, Wilson L, Tomasello G (2001) Effect of modulation of enzyme inactivation on temperature optimization for reactor operation with chitin-immobilized lactase. J Mol Catal B-Enzym 11:531–540CrossRefGoogle Scholar
  26. 26.
    Azevedo AM, Fonseca LP, Prazeres DMF (1999) Stability and stabilisation of penicillin acylase. J Chem Technol Biotechnol 74:1110–1116CrossRefGoogle Scholar
  27. 27.
    Longo MA, Combes D (1999) Thermostability of modified enzymes: a detailed study. J Chem Technol Biotechnol 74:25–32CrossRefGoogle Scholar
  28. 28.
    Mateo C, Palomo JM, Fuentes M et al (2006) Glyoxyl-agarose: a fully inert hydrophilic support for immobilization and high stabilization of proteins. Enzyme Microb Technol 39:274–280CrossRefGoogle Scholar
  29. 29.
    Horvath C, Engasser JM (1974) External and internal diffusion in heterogeneous enzymes systems. Biotechnol Bioeng 16:909–923CrossRefGoogle Scholar
  30. 30.
    Illanes A (2008) Enzyme biocatalysis: principles and applications. Springer, United KingdomCrossRefGoogle Scholar
  31. 31.
    Rovito BJ, Kittrell JR (1973) Film and pore diffusion studies with immobilized glucose oxidase. Biotechnol Bioeng 15:143–161CrossRefGoogle Scholar
  32. 32.
    Buchholz K (1982) Reaction engineering parameters for immobilized biocatalysts. In: Fiechter A (ed) Advances in biochemical engineering, vol 24. Springer-Verlag, Berlin, pp 39–71Google Scholar
  33. 33.
    Valencia P, Wilson L, Aguirre C et al (2010) Evaluation of the incidence of diffusional restrictions on the enzymatic reactions of hydrolysis of penicillin G and synthesis of cephalexin. Enzyme Microb Technol 47:268–276CrossRefGoogle Scholar
  34. 34.
    Benda A, Beneš M, Mareček V et al (2003) How to determine diffusion coefficients in planar phospholipid systems by confocal fluorescence correlation spectroscopy. Langmuir 19:4120–4126CrossRefGoogle Scholar
  35. 35.
    Grünwald P (1989) Determination of effective diffusion coefficient: an important parameter for the efficiency of immobilized biocatalysts. Biochem Educ 17:99–102CrossRefGoogle Scholar
  36. 36.
    Valencia P, Flores S, Wilson et al (2010) Effect of particle size distribution on the simulation of immobilized enzyme reactor performance. Biochem Eng J 49:256–263CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.School of Biochemical Engineering, Pontificia Universidad Católica de ValparaísoValparaísoChile

Personalised recommendations