Manufacturing of Protein-Based Biomaterials Coupling Cell-Free Protein Synthesis with Protein Immobilization

  • Fernando López-GallegoEmail author
  • Ana I. Benítez-Mateos
Part of the Methods in Molecular Biology book series (MIMB, volume 2100)


Manufacturing of protein-based biomaterials is gaining momentum in biomedical applications. In this chapter, we describe the procedures to create a versatile platform for the one-pot fabrication of different types of protein-based biomaterials by coupling the in vitro protein synthesis with the protein immobilization on solid materials in one-pot. To this aim, a set of plasmids and a battery of solid materials must be developed to guarantee the selective immobilization of the nascent protein on the surfaces, giving rise to functional biomaterials. This methodology also allows functionalizing materials with two or more proteins to increase the biomaterial’s functionalities. Herein, this technology only requires the genomic information encoding the target protein, the desired solid material, and the cell-free extract containing the protein synthesis machinery. The cooperative action of all these elements turns out this portable technology as an innovative strategy for prototyping the fabrication of biomaterials and shortening their processing time.

Key words

Cell-free protein synthesis In situ protein immobilization Protein-functionalized biomaterials Homopeptide tag Synthetic biology 


  1. 1.
    Qiang W, Tobias B, Stefano AU, Joachim D, Christian W, Neffe AT et al (2014) Protein interactions with polymer coatings and biomaterials. Angew Chem Int Ed Engl 53:8004–8031CrossRefGoogle Scholar
  2. 2.
    Editorial (2017) Patient-centered drug manufacture. Nat Biotechnol 35:485CrossRefGoogle Scholar
  3. 3.
    Nirenberg MW, Matthaei JH (1961) The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides. Proc Nat Acad Sci U S A 47:1588–1602CrossRefGoogle Scholar
  4. 4.
    Caschera F, Noireaux V (2014) Synthesis of 2.3 mg/mL of protein with an all Escherichia coli cell-free transcription–translation system. Biochimie 99:162–168CrossRefGoogle Scholar
  5. 5.
    Terpe K (2006) Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 72:211CrossRefGoogle Scholar
  6. 6.
    Pardee K, Slomovic S, Nguyen PQ, Lee JW, Donghia N, Burrill D et al (2016) Portable, on-demand biomolecular manufacturing. Cell 167:248–259CrossRefGoogle Scholar
  7. 7.
    Batalla P, Bolívar JM, Lopez-Gallego F, Guisan JM (2012) Oriented covalent immobilization of antibodies onto heterofunctional agarose supports: a highly efficient immuno-affinity chromatography platform. J Chromatog A 1262:56–63CrossRefGoogle Scholar
  8. 8.
    Rehm F, Chen S, Rehm B (2016) Enzyme engineering for in situ immobilization. Molecules 21:1370CrossRefGoogle Scholar
  9. 9.
    Hall Sedlak R, Hnilova M, Grosh C, Fong H, Baneyx F, Schwartz D et al (2012) Engineered Escherichia coli silver-binding periplasmic protein that promotes silver tolerance. Appl Environ Microbiol 78:2289–2296CrossRefGoogle Scholar
  10. 10.
    Yang M, Choi BG, Park TJ, Heo NS, Hong WH, Lee SY (2011) Site-specific immobilization of gold binding polypeptide on gold nanoparticle-coated graphene sheet for biosensor application. Nanoscale 3:2950–2956CrossRefGoogle Scholar
  11. 11.
    Bodelón G, Mourdikoudis S, Yate L, Pastoriza-Santos I, Pérez-Juste J, Liz-Marzán LM (2014) Nickel nanoparticle-doped paper as a bioactive scaffold for targeted and robust immobilization of functional proteins. ACS Nano 8:6221–6231CrossRefGoogle Scholar
  12. 12.
    Schwaminger SP, Blank-Shim SA, Scheifele I, Fraga-Garcia P, Berensmeier S (2017) Peptide binding to metal oxide nanoparticles. Faraday Discuss 204:233–255CrossRefGoogle Scholar
  13. 13.
    Wiesbauer J, Bolivar JM, Mueller M, Schiller M, Nidetzky B (2011) Oriented immobilization of enzymes made fit for applied biocatalysis: non-covalent attachment to anionic supports using Zbasic2 module. ChemCatChem 3:1299–1303CrossRefGoogle Scholar
  14. 14.
    López-Gallego F, Acebrón I, Mancheño JM, Raja S, Lillo MP, Guisán Seijas JM (2012) Directed, strong, and reversible immobilization of proteins tagged with a β-trefoil lectin domain: a simple method to immobilize biomolecules on plain agarose matrixes. Bioconjug Chem 23:565–573CrossRefGoogle Scholar
  15. 15.
    Yunker PJ, Asahara H, Hung K-C, Landry C, Arriaga LR, Akartuna I et al (2016) One-pot system for synthesis, assembly, and display of functional single-span membrane proteins on oil–water interfaces. Proc Natl Acad Sci U S A 113:608–613CrossRefGoogle Scholar
  16. 16.
    Denman AM (1983) Molecular cloning: a laboratory manual. Immunology 49:411PubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Fernando López-Gallego
    • 1
    Email author
  • Ana I. Benítez-Mateos
    • 2
  1. 1.Departamento de Química OrgánicaInstituto de Síntesis Química y Catálisis Homogénea (ISQCH) CSIC-Universidad de ZaragozaZaragozaSpain
  2. 2.Heterogeneous Biocatalysis Laboratory, CIC-BiomaGUNEDonostia-San SebastianSpain

Personalised recommendations