Advertisement

Encapsulation of Enzymes in Porous Capsules via Particle Templating

  • Mikhail V. Zyzin
  • Pedro Ramos-Cabrer
  • Susana Carregal-RomeroEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2100)

Abstract

The entrapment of enzymes in capsules is a smart strategy to concentrate them in confined spaces and control their exposure to outside environments. Enzymes can be caged in the interior of capsules during their formation (preloading) or postloaded within prefabricated and permeable hollow shells. On the other hand, enzymes can also be deposited within the shell or on the surface of the capsules. Each of these strategies has intrinsic limitations, and a common enemy is the undesired desorption of enzymes.

Here, we describe the formation of enzyme-loaded polymeric capsules prepared with the Layer-by-Layer method and the template-assisted entrapment of enzymes through coprecipitation (preloading) within calcium carbonate particles, as an example of an efficient preloading strategy, and draw attention at the key parameters that influence this immobilization method.

Key words

Calcium carbonate Layer-by-layer Self-assembly Enzymatic activity Polyelectrolyte capsules 

Notes

Acknowledgments

MVZ acknowledges the President’s Scholarship SP-1576.2018.4 and the Russian Science Foundation for funding (Grant N 19-75-00039).

References

  1. 1.
    Kantner K, Rejman J, Kraft KVL, Soliman MG, Zyuzin MV, Escudero A, Del Pino P, Parak WJ (2018) Laterally and temporally controlled intracellular staining by light-triggered release of encapsulated fluorescent markers. Chemistry 24(9):2098–2102PubMedCrossRefGoogle Scholar
  2. 2.
    Dergunov SA, Khabiyev AT, Shmakov SN, Kim MD, Ehterami N, Weiss MC, Birman VB, Pinkhassik E (2016) Encapsulation of homogeneous catalysts in porous polymer nanocapsules produces fast-acting selective nanoreactors. ACS Nano 10(12):11397–11406PubMedCrossRefGoogle Scholar
  3. 3.
    Lvov Y, Antipov AA, Mamedov A, Möhwald H, Sukhorukov GB (2001) Urease encapsulation in nanoorganized microshells. Nano Lett 1(3):125–128CrossRefGoogle Scholar
  4. 4.
    Sakr OS, Borchard G (2013) Encapsulation of enzymes in Layer-by-Layer (LbL) structures: latest advances and applications. Biomacromolecules 14(7):2117–2135PubMedCrossRefGoogle Scholar
  5. 5.
    Ott A, Yu X, Hartmann R, Rejman J, Schütz A, Ochs M, Parak WJ, Carregal-Romero S (2015) Light-addressable and degradable silica capsules for delivery of molecular cargo to the cytosol of cells. Chem Mat 27:1929–1942CrossRefGoogle Scholar
  6. 6.
    Hussain SZ, Zyuzin MV, Hussain I, Parak WJ, Carregal-Romero S (2016) Catalysis by multifunctional polyelectrolyte capsules. RSC Adv 6(85):81569–81577CrossRefGoogle Scholar
  7. 7.
    Liang Z, Wang C, Tong Z, Ye W, Ye S (2005) Bio-catalytic nanoparticles with urease immobilized in multilayer assembled through layer-by-layer technique. React Funct Polym 63(1):85–94CrossRefGoogle Scholar
  8. 8.
    Chang F-P, Hung Y, Chang J-H, Lin C-H, Mou C-Y (2014) Enzyme encapsulated hollow silica nanospheres for intracellular biocatalysis. ACS Appl Mater Interfaces 6(9):6883–6890PubMedCrossRefGoogle Scholar
  9. 9.
    González-Domínguez E, Comesaña-Hermo M, Mariño-Fernández R, rodríguez-González B, Arenal R, Salgueiriño V, Moldes D, Othman AM, Pérez-Lorenzo M, Correa-Duarte MA (2016) Hierarchical nanoplatforms for high-performance enzyme biocatalysis under denaturing conditions. ChemCatChem 8(7):1264–1268CrossRefGoogle Scholar
  10. 10.
    Benítez-Mateos AI, Llarena I, Sánchez-Iglesias A, López-Gallego F (2018) Expanding one-pot cell-free protein synthesis and immobilization for O on-demand manufacturing of biomaterials. ACS Synthetic Bio 7(3):875–884CrossRefGoogle Scholar
  11. 11.
    Were LM, Bruce BD, Davidson PM, Weiss J (2003) Size, stability, and entrapment efficiency of phospholipid nanocapsules containing polypeptide antimicrobials. J Agric Food Chem 51(27):8073–8079PubMedCrossRefGoogle Scholar
  12. 12.
    Wilkerson JW, Yang SO, Funk PJ, Stanley SK, Bundy BC (2018) Nanoreactors: strategies to encapsulate enzyme biocatalysts in virus-like particles. New Biotechnol 44:59–63CrossRefGoogle Scholar
  13. 13.
    Tsang SC, Yu CH, Gao X, Tam K (2006) Silica-encapsulated nanomagnetic particle as a new recoverable biocatalyst carrier. J Phys Chem B 110(34):16914–16922PubMedCrossRefGoogle Scholar
  14. 14.
    Ariga K, Ji Q, Hill JP (2010) Enzyme-encapsulated Layer-by-Layer assemblies: current status and challenges toward ultimate nanodevices. Modern techniques for nano- and microreactors/−reactions. Springer, Berlin, pp 51–87Google Scholar
  15. 15.
    Walde P, Ichikawa S (2001) Enzymes inside lipid vesicles: preparation, reactivity and applications. Biomol Eng 18(4):143–177PubMedCrossRefGoogle Scholar
  16. 16.
    Yoshimoto M, Sakamoto H, Yoshimoto N, Kuboi R, Nakao K (2007) Stabilization of quaternary structure and activity of bovine liver catalase through encapsulation in liposomes. Enzym Microb Technol 41(6):849–858CrossRefGoogle Scholar
  17. 17.
    Zhang R, Feng L, Dong Z, Wang L, Liang C, Chen J, Ma Q, Zhang R, Chen Q, Wang Y, Liu Z Glucose & oxygen exhausting liposomes for combined cancer starvation and hypoxia-activated therapy. Biomaterials 162:123–131Google Scholar
  18. 18.
    Colletier JP, Chaize B, Winterhalter M, Fournier D (2002) Protein encapsulation in liposomes: efficiency depends on interactions between protein and phospholipid bilayer. BMC Biotechnol 2(9)PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Chen C, Han D, Cai C, Tang X (2010) An overview of liposome lyophilization and its future potential. J Control Release 142(3):299–311PubMedCrossRefGoogle Scholar
  20. 20.
    Caruso F, Trau D, Möhwald H, Renneberg R (2000) Enzyme encapsulation in layer-by-layer engineered polymer multilayer capsules. Langmuir 16(4):1485–1488CrossRefGoogle Scholar
  21. 21.
    López-Gallego F, Yate L (2015) Selective biomineralization of Co3(PO4)2-sponges triggered by His-tagged proteins: efficient heterogeneous biocatalysts for redox processes. Chem Commun 51(42):8753–8756CrossRefGoogle Scholar
  22. 22.
    Petrov AP, Volodkin DV, Sukhorukov GB (2005) Protein-calcium carbonate coprecipitation: a tool for protein encapsulation. Biotechnol Prog 21(3):918–925PubMedCrossRefGoogle Scholar
  23. 23.
    Parakhonskiy BV, Yashchenok AM, Konrad M, Skirtach AG (2014) Colloidal micro- and nano-particles as templates for polyelectrolyte multilayer capsules. Adv Colloid Interf Sci 207:253–264CrossRefGoogle Scholar
  24. 24.
    Parakhonskiy BV, Haase A, Antolini R (2012) Sub-micrometer vaterite containers: synthesis, substance loading, and release. Angew Chem Int Ed 51(5):1195–1197CrossRefGoogle Scholar
  25. 25.
    Parakhonskiy B, Zyuzin MV, Yashchenok A, Carregal-Romero S, Rejman J, Möhwald H, Parak WJ, Skirtach AG (2015) The influence of the size and aspect ratio of anisotropic, porous CaCO3 particles on their uptake by cells. J Nanobiotechnol 13(1):53CrossRefGoogle Scholar
  26. 26.
    Harimech PK, Hartmann R, Rejman J, del_Pino P, Rivera_Gil P, Parak WJ (2015) Encapsulated enzymes with integrated fluorescence-control of enzymatic activity. J Mater Chem B 3(14):2801–2807CrossRefGoogle Scholar
  27. 27.
    Volodkin DV, Petrov AI, Prevot M, Sukhorukov GB (2004) Matrix polyelectrolyte microcapsules: new system for macromolecule encapsulation. Langmuir 20(8):3398–3406PubMedCrossRefGoogle Scholar
  28. 28.
    Skirtach A, Yashchenok A, Möhwald H (2011) Encapsulation, release and applications of LbL polyelectrolyte multilayer capsules. Chem Commun 47(48):12736–12746CrossRefGoogle Scholar
  29. 29.
    Donath E, Sukhorukov GB, Caruso F, Davis SA, Möhwald H (1998) Novel hollow polymer shells by colloid-templated assembly of polyelectrolytes. Angew Chem Int Ed 37(16):2202–2205CrossRefGoogle Scholar
  30. 30.
    Milkova V, Radeva T (2013) Effect of ionic strength and molecular weight on electrical properties and thickness of polyelectrolyte bi-layers. Colloids Surf A Physicochem Eng Asp 424:52–58CrossRefGoogle Scholar
  31. 31.
    Schönhoff M, Ball V, Bausch AR, Dejugnat C, Delorme N, Glinel K, Klitzing RV, Steitz R (2007) Hydration and internal properties of polyelectrolyte multilayers. Colloids Surf A Physicochem Eng Asp 303(1–2):14–29CrossRefGoogle Scholar
  32. 32.
    Steitz R, Leiner V, Siebrecht R, Klitzing R (2000) Influence of the ionic strength on the structure of polyelectrolyte films at the solid/liquid interface. Colloids Surf A Physicochem Eng Asp 163(1):63–70CrossRefGoogle Scholar
  33. 33.
    Karamitros CS, Yashchenok AM, Möhwald H, Skirtach AG, Konrad M (2013) Preserving catalytic activity and enhancing biochemical stability of the therapeutic enzyme asparaginase by biocompatible multi layered polyelectrolyte microcapsules. Biomacromolecules 14(12):4398–4406PubMedCrossRefGoogle Scholar
  34. 34.
    Mahajan RV, Kumar V, Rajendran V, Saran S, Ghosh PC, Saxena RK (2014) Purification and characterization of a novel and robust L-asparaginase having low-glutaminase activity from bacillus licheniformis: in vitro evaluation of anti-cancerous properties. PLoS One 9(6):e99037PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Volodkin DV, Larionova NI, Sukhorukov GB (2004) Protein encapsulation via porous CaCO3 microparticles templating. Biomacromolecules 5(5):1962–1972PubMedCrossRefGoogle Scholar
  36. 36.
    Svenskaya YI, Fattah H, Inozemtseva OA, Ivanova AG, Shtykov SN, Gorin DA, Parakhonskiy BV (2018) Key parameters for size- and shape-controlled synthesis of vaterite particles. Cryst Growth Des 18(1):331–337CrossRefGoogle Scholar
  37. 37.
    Beck R, Andreassen J-P (2010) Spherulitic growth of calcium carbonate. Cryst Growth Des 10(7):2934–2947CrossRefGoogle Scholar
  38. 38.
    Ochs M, Carregal-Romero S, Rejman J, Braeckmans K, De Smedt SC, Parak WJ (2012) Light-addressable capsules as caged compound matrix for controlled triggering of cytosolic reactions. Angew Chem Int Ed 52(2):695–699CrossRefGoogle Scholar
  39. 39.
    Trushina DB, Bukreeva TV, Antipina MN (2016) Size-controlled synthesis of vaterite calcium carbonate by the mixing method: aiming for nanosized method. Cryst Growth Des 16(3):1311–1319.40CrossRefGoogle Scholar
  40. 40.
    Krzyzanek V, Sporenberg N, Keller U, Guddorf J, Reichelt R, Schönhoff M (2011) Polyelectrolyte multilayer capsules: nanostructure and visualisation of nanopores in the wall. Soft Matter 7(15):7034–7041CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Mikhail V. Zyzin
    • 1
  • Pedro Ramos-Cabrer
    • 2
    • 3
  • Susana Carregal-Romero
    • 4
    • 5
    Email author
  1. 1.Faculty of Physics and EngineeringITMO UniversitySt. PetersburgRussia
  2. 2.Magnetic Resonance Imaging Lab, CIC biomaGUNEDonostia-San SebastianSpain
  3. 3.Ikerbasque, Basque Foundation for ScienceBilbaoSpain
  4. 4.Molecular and Functional Biomarkers, CIC biomaGUNEDonostia-San SebastianSpain
  5. 5.CIBER Enfermedades Respiratorias (CIBERES)MadridSpain

Personalised recommendations