Advertisement

Immobilization of Proteins on Gold Surfaces

  • José M. Abad
  • Marcos PitaEmail author
  • Víctor M. Fernández
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2100)

Abstract

Gold has been a widely used support for protein immobilization in a nonspecific way through electrostatic and hydrophobic interactions. As no tools are available to predict the binding of proteins of biological interest to gold supports—for either nano, micro, or macroscopic sizes—smart, reliable, and reproducible protein immobilization protocols on gold are sought. This chapter will focus on a synthetic strategy which allows for the development of a multiplicity of architectures on gold that may be used for protein immobilization. Because of its simplicity, both from a conceptual and a practical point of view, the strategy demonstrated by this step-by-step synthesis of a functionally self-assembled monolayer (SAM) of thiols on gold is accessible to most laboratories working on enzyme technology, even those with limited organic synthesis facilities.

Key words

Gold Self-assembled monolayers SAM Oriented immobilization Nanoparticles 

References

  1. 1.
    Welsh KJ, Dorval G, Wigzell H (1975) Rapid quantitation of membrane antigens. Nature 254:67–69CrossRefGoogle Scholar
  2. 2.
    Roth J, Bendayan M, Orci L (1978) Ultrastructural localization of intracellular antigens by the use of protein A-gold complex. J Hystochem Cytochem 26:1074–1081CrossRefGoogle Scholar
  3. 3.
    Ferapontova EE, Grigorenko VG, Egorov AM, Börchers T, Ruzgas T, Gorton L (2001) Mediatorless biosensor for H2O2 based on recombinant forms of horseradish peroxidase directly adsorbed on polycrystalline gold. Biosens Bioelectron 16:147–157CrossRefGoogle Scholar
  4. 4.
    Sarikaya M, Tamerler C, Jen AK-Y, Schulten K, Baneyx F (2003) Molecular biomimetics: nanotechnology through biology. Nat Mater 2:577–585CrossRefGoogle Scholar
  5. 5.
    Braun R, Sarikaya M, Shulten KS (2002) Genetically engineered gold – binding polypeptides: structure prediction and molecular dynamics. Aust J Biol Sci 13:747–758Google Scholar
  6. 6.
    Lösche M (1997) Protein monolayers at interfaces. Curr Opin Solid State Mater Sci 2:546–556CrossRefGoogle Scholar
  7. 7.
    Ulman A (1996) Formation and structure of self-assembled monolayers. Chem Rev 96:1533–1554CrossRefGoogle Scholar
  8. 8.
    Rigler P, Ulrich W–P, Hoffmann P, Mayer M, Vogel H (2003) Reversible immobilization of peptides: surface modification and in situ detection by attenuated total reflection FTIR spectroscopy. Chem Phys Chem 4:268–275CrossRefGoogle Scholar
  9. 9.
    Spinke J, Liley M, Schmitt M, Guder HJ, Angermaier L, Knoll W (1993) Molecular recognition at self-assembled monolayers. Optimization of surface functionalization. J Chem Phys 99:7012–7019CrossRefGoogle Scholar
  10. 10.
    Spinke J, Liley M, Guder HJ, Angermaier L, Knoll W (1993) Molecular recognition at self assembled monolayers. The construction of multicomponent multilayers. Langmuir 9:1821–1825CrossRefGoogle Scholar
  11. 11.
    Madoz J, Kuznetsov BA, Medrano FJ, García JL, Fernández VM (1997) Functionalization of gold surfaces for specific and reversible attachment of a fused β-Galactosidase and choline-receptor protein. J Am Chem Soc 119:1043–1051CrossRefGoogle Scholar
  12. 12.
    Wagner P, Hegner M, Güntherodt H-J, Semenza G (1995) Formation and in situ modification of monolayers chemisorbed on ultraflat template stripped gold surfaces. Langmuir 11:3867–3875CrossRefGoogle Scholar
  13. 13.
    Wadu-Mesthrige K, Amor NA, Liu G-Y (2002) Immobilization of proteins on self-assembled monolayers. Scanning 22:380–388CrossRefGoogle Scholar
  14. 14.
    Rickert J, Brecht A, Gopal W (1997) QCM for quantitative biosensing and characterizing protein monolayers. Biosens Bioelectron 12:809–816CrossRefGoogle Scholar
  15. 15.
    Lahiri J, Issacs L, Tien J, Whitesides M (1999) A strategy for the generation of surfaces presenting ligands for studies of binding based on an active ester as a common reactive intermediate: a surface plasmon resonance study. Anal Chem 71:777–790CrossRefGoogle Scholar
  16. 16.
    Madoz-Gúrpide J, Abad JM, Fernández-Recio J et al (2000) Modulation of electroenzymatic NADPH oxidation through oriented immobilization of ferredoxin:NADP+ reductase onto modified gold electrodes. J Am Chem Soc 122:9808–9817CrossRefGoogle Scholar
  17. 17.
    Abad JM, Vélez M, Santamaría C et al (2002) Immobilization of peroxidase glycoprotein on gold electrodes modified with mixed epoxy-boronic acid monolayers. J Am Chem Soc 124:845–853CrossRefGoogle Scholar
  18. 18.
    Godillot P, Korri-Youssoufi H, Srivastava P, El Kassmi A, Garnier F (1996) Direct chemical functionalization of as-grown electroactive polypyrrole film containing leaving groups. Synth Met 83:117–123CrossRefGoogle Scholar
  19. 19.
    Sánchez-Puelles JM, Sanz JM, García E (1992) Immobilization and single-step purification of fusion proteins using DEAE-cellulose. Eur J Biochem 203:153–159CrossRefGoogle Scholar
  20. 20.
    Kissinger PT, Heineman WE (eds) (1984) Laboratory techniques in electroanalytical chemistry. Marcel Decker, New YorkGoogle Scholar
  21. 21.
    Koike M, Hayakawa T (1970) Purification and properties of lipoamide dehydrogenase. Methods Enzymol 18:298–307CrossRefGoogle Scholar
  22. 22.
    Bourdillon C, Demaille C, Gueris J, Moiroux J, Saveant JM (1993) A fully active monolayer enzyme electrode derivatized by antigen-antibody attachment. J Am Chem Soc 115:12264–12269CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • José M. Abad
    • 1
  • Marcos Pita
    • 1
    Email author
  • Víctor M. Fernández
    • 1
  1. 1.Institute of Catalysis, CSIC, Campus UAM-CantoblancoMadridSpain

Personalised recommendations