Advertisement

Molecular Modeling of the Interaction Between Stem Cell Peptide and Immune Receptor in Plants

  • Muhammad Naseem
  • Mugdha Srivastava
  • Ozge Osmanoglu
  • Jibran Iqbal
  • Fares M. Howari
  • Fatima A. AlRemeithi
  • Thomas DandekarEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2094)

Abstract

Molecular docking enables comprehensive exploration of interactions between chemical moieties and proteins. Modeling and docking approaches are useful to determine the three-dimensional (3D) structure of experimentally uncrystallized proteins and subsequently their interactions with various inhibitors and activators or peptides. Here, we describe a protocol for carrying out molecular modeling and docking of stem cell peptide CLV3p on plant innate immune receptor FLS2.

Key words

FLS2 CLV3p Docking Modeling Structure prediction Protein peptide interaction 

Notes

Acknowledgments

We thank the German Research Foundation (DFG) for funding (TR124/B1) to TD and start-up grant (R18045) by Zayed University to MN and UAE Space Agency grant (EU1804) to FMH.

References

  1. 1.
    Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329.  https://doi.org/10.1038/nature05286CrossRefPubMedGoogle Scholar
  2. 2.
    Newman M-A, Sundelin T, Nielsen JT, Erbs G (2013) MAMP (microbe-associated molecular pattern) triggered immunity in plants. Front Plant Sci 4:139.  https://doi.org/10.3389/fpls.2013.00139CrossRefPubMedCentralGoogle Scholar
  3. 3.
    Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60:379–406.  https://doi.org/10.1146/annurev.arplant.57.032905.105346CrossRefGoogle Scholar
  4. 4.
    Lee H, Chah O-K, Sheen J (2011) Stem-cell-triggered immunity through CLV3p-FLS2 signalling. Nature 473:376–379.  https://doi.org/10.1038/nature09958CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Sun Y, Li L, Macho AP et al (2013) Structural basis for flg22-induced activation of the Arabidopsis FLS2-BAK1 immune complex. Science 342:624–628.  https://doi.org/10.1126/science.1243825CrossRefGoogle Scholar
  6. 6.
    Felix G, Duran JD, Volko S, Boller T (1999) Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J 18:265–276CrossRefGoogle Scholar
  7. 7.
    Meziane H, VAN DER Sluis I, VAN Loon LC et al (2005) Determinants of Pseudomonas putida WCS358 involved in inducing systemic resistance in plants. Mol Plant Pathol 6:177–185.  https://doi.org/10.1111/j.1364-3703.2005.00276.xCrossRefPubMedGoogle Scholar
  8. 8.
    Mueller K, Chinchilla D, Albert M et al (2012) Contamination risks in work with synthetic peptides: flg22 as an example of a pirate in commercial peptide preparations. Plant Cell 24:3193–3197.  https://doi.org/10.1105/tpc.111.093815CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Segonzac C, Nimchuk ZL, Beck M et al (2012) The shoot apical meristem regulatory peptide CLV3 does not activate innate immunity. Plant Cell 24:3186–3192.  https://doi.org/10.1105/tpc.111.091264CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Srivastava M, Gupta SK, Abhilash PC, Singh N (2012) Structure prediction and binding sites analysis of curcin protein of Jatropha curcas using computational approaches. J Mol Model 18:2971–2979.  https://doi.org/10.1007/s00894-011-1320-0CrossRefPubMedGoogle Scholar
  11. 11.
    Zhang Y (2009) Protein structure prediction: is it useful? Curr Opin Struct Biol 19:145–155.  https://doi.org/10.1016/j.sbi.2009.02.005CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779–815.  https://doi.org/10.1006/jmbi.1993.1626CrossRefPubMedGoogle Scholar
  13. 13.
    Altschul SF, Madden TL, Schäffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402CrossRefGoogle Scholar
  14. 14.
    Rodrigues JPGLM, Levitt M, Chopra G (2012) KoBaMIN: a knowledge-based minimization web server for protein structure refinement. Nucleic Acids Res 40:W323–W328.  https://doi.org/10.1093/nar/gks376CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Laskowski RA, Rullmannn JA, MacArthur MW et al (1996) AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8:477–486CrossRefGoogle Scholar
  16. 16.
    Laskowski RA, Hutchinson EG, Michie AD et al (1997) PDBsum: a web-based database of summaries and analyses of all PDB structures. Trends Biochem Sci 22:488–490CrossRefGoogle Scholar
  17. 17.
    Pierce B, Tong W, Weng Z (2005) M-ZDOCK: a grid-based approach for Cn symmetric multimer docking. Bioinformatics 21:1472–1478.  https://doi.org/10.1093/bioinformatics/bti229CrossRefGoogle Scholar
  18. 18.
    Pierce BG, Hourai Y, Weng Z (2011) Accelerating protein docking in ZDOCK using an advanced 3D convolution library. PLoS One 6:e24657.  https://doi.org/10.1371/journal.pone.0024657CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Pierce B, Weng Z (2007) ZRANK: reranking protein docking predictions with an optimized energy function. Proteins 67:1078–1086.  https://doi.org/10.1002/prot.21373CrossRefGoogle Scholar
  20. 20.
    Berman HM, Battistuz T, Bhat TN et al (2002) The protein data Bank. Acta Crystallogr D Biol Crystallogr 58:899–907CrossRefGoogle Scholar
  21. 21.
    Betsuyaku S, Sawa S, Yamada M (2011) The function of the CLE peptides in plant development and plant-microbe interactions. Arabidopsis Book 9:e0149.  https://doi.org/10.1199/tab.0149CrossRefPubMedCentralGoogle Scholar
  22. 22.
    Feyfant E, Sali A, Fiser A (2007) Modeling mutations in protein structures. Protein Sci 16:2030–2041.  https://doi.org/10.1110/ps.072855507CrossRefPubMedCentralGoogle Scholar
  23. 23.
    Gupta SK, Gupta SK, Smita S et al (2011) Computational analysis and modeling the effectiveness of “Zanamivir” targeting neuraminidase protein in pandemic H1N1 strains. Infect Genet Evol 11:1072–1082.  https://doi.org/10.1016/j.meegid.2011.03.018CrossRefPubMedGoogle Scholar
  24. 24.
    Chen R, Weng Z (2003) A novel shape complementarity scoring function for protein-protein docking. Proteins 51:397–408.  https://doi.org/10.1002/prot.10334CrossRefPubMedGoogle Scholar
  25. 25.
    Janin J (2005) Assessing predictions of protein–protein interaction: the CAPRI experiment. Protein Sci 14:278–283.  https://doi.org/10.1110/ps.041081905CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Muhammad Naseem
    • 1
    • 2
  • Mugdha Srivastava
    • 2
  • Ozge Osmanoglu
    • 2
  • Jibran Iqbal
    • 1
  • Fares M. Howari
    • 1
  • Fatima A. AlRemeithi
    • 1
  • Thomas Dandekar
    • 2
    Email author
  1. 1.Department of Life and Environmental Sciences, College of Natural and Health SciencesZayed UniversityAbu DhabiUAE
  2. 2.Department of Bioinformatics, BiocenterUniversity of WuerzburgWuerzburgGermany

Personalised recommendations