Advertisement

Study of Cell-Type-Specific Chromatin Organization: In Situ Hi-C Library Preparation for Low-Input Plant Materials

  • Nan Wang
  • Chang LiuEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2093)

Abstract

The three-dimensional folding of chromatin contributes to the control of genome functions in eukaryotes, including transcription, replication, chromosome segregation, and DNA repair. In recent decades, many cytological and molecular methods have provided profound structural insights into the hierarchical organization of plant chromatin. With the Hi-C (high-throughput chromosome conformation capture) technique, analyses of global chromatin organization in plants indicate considerable differences across species. However, our knowledge of how chromatin organization at a local level is connected to tissue-specific gene expression is rather limited. This problem can be tackled by performing fluorescence-activated sorting of fixed nuclei followed by Hi-C, which is tailored for a limited number of input nuclei. Here, we describe an approach of isolating Arabidopsis thaliana nuclei with defined endopolyploidy level and subsequent in situ Hi-C library preparation for low-input plant materials. In principle, this method can be applied to any types of fluorescence-labeled nuclei, offering researchers a useful tool to unveil temporal and spatial chromatin dynamics in 3D in a tissue-specific context.

Key words

In situ Hi-C FACS Chromatin organization Low-input 

Notes

Acknowledgment

This work has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No. 757600).

References

  1. 1.
    Bonev B, Cavalli G (2016) Organization and function of the 3D genome. Nat Rev Genet 17(11):661–678.  https://doi.org/10.1038/nrg.2016.112CrossRefPubMedGoogle Scholar
  2. 2.
    Dekker J, Belmont AS, Guttman M, Leshyk VO, Lis JT, Lomvardas S, Mirny LA, O’Shea CC, Park PJ, Ren B, Politz JCR, Shendure J, Zhong S, Network DN (2017) The 4D nucleome project. Nature 549(7671):219–226.  https://doi.org/10.1038/nature23884CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Gibcus JH, Dekker J (2013) The hierarchy of the 3D genome. Mol Cell 49(5):773–782.  https://doi.org/10.1016/j.molcel.2013.02.011CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Spielmann M, Lupianez DG, Mundlos S (2018) Structural variation in the 3D genome. Nat Rev Genet 19(7):453–467.  https://doi.org/10.1038/s41576-018-0007-0CrossRefPubMedGoogle Scholar
  5. 5.
    Lieberman-Aiden E, Dekker J (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326(5950):289CrossRefGoogle Scholar
  6. 6.
    Belton JM, Mccord RP, Gibcus J, Naumova N, Ye Z, Dekker J (2012) Hi-C: a comprehensive technique to capture the conformation of genomes. Methods 58(3):268–276CrossRefGoogle Scholar
  7. 7.
    Jibran R, Dzierzon H, Bassil N, Bushakra JM, Edger PP, Sullivan S, Finn CE, Dossett M, Vining KJ, VanBuren R, Mockler TC, Liachko I, Davies KM, Foster TM, Chagne D (2018) Chromosome-scale scaffolding of the black raspberry (Rubus occidentalis L.) genome based on chromatin interaction data. Hortic Res 5:8.  https://doi.org/10.1038/s41438-017-0013-yCrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Lightfoot DJ, Jarvis DE, Ramaraj T, Lee R, Jellen EN, Maughan PJ (2017) Single-molecule sequencing and Hi-C-based proximity-guided assembly of amaranth (Amaranthus hypochondriacus) chromosomes provide insights into genome evolution. BMC Biol 15(1):74.  https://doi.org/10.1186/s12915-017-0412-4CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok SO, Wicker T, Radchuk V, Dockter C, Hedley PE, Russell J, Bayer M, Ramsay L, Liu H, Haberer G, Zhang XQ, Zhang Q, Barrero RA, Li L, Taudien S, Groth M, Felder M, Hastie A, Simkova H, Stankova H, Vrana J, Chan S, Munoz-Amatriain M, Ounit R, Wanamaker S, Bolser D, Colmsee C, Schmutzer T, Aliyeva-Schnorr L, Grasso S, Tanskanen J, Chailyan A, Sampath D, Heavens D, Clissold L, Cao S, Chapman B, Dai F, Han Y, Li H, Li X, Lin C, McCooke JK, Tan C, Wang P, Wang S, Yin S, Zhou G, Poland JA, Bellgard MI, Borisjuk L, Houben A, Dolezel J, Ayling S, Lonardi S, Kersey P, Langridge P, Muehlbauer GJ, Clark MD, Caccamo M, Schulman AH, Mayer KFX, Platzer M, Close TJ, Scholz U, Hansson M, Zhang G, Braumann I, Spannagl M, Li C, Waugh R, Stein N (2017) A chromosome conformation capture ordered sequence of the barley genome. Nature 544(7651):427–433.  https://doi.org/10.1038/nature22043CrossRefPubMedGoogle Scholar
  10. 10.
    Raymond O, Gouzy J, Just J, Badouin H, Verdenaud M, Lemainque A, Vergne P, Moja S, Choisne N, Pont C, Carrere S, Caissard JC, Couloux A, Cottret L, Aury JM, Szecsi J, Latrasse D, Madoui MA, Francois L, Fu X, Yang SH, Dubois A, Piola F, Larrieu A, Perez M, Labadie K, Perrier L, Govetto B, Labrousse Y, Villand P, Bardoux C, Boltz V, Lopez-Roques C, Heitzler P, Vernoux T, Vandenbussche M, Quesneville H, Boualem A, Bendahmane A, Liu C, Le Bris M, Salse J, Baudino S, Benhamed M, Wincker P, Bendahmane M (2018) The Rosa genome provides new insights into the domestication of modern roses. Nat Genet 50(6):772–777.  https://doi.org/10.1038/s41588-018-0110-3CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Grob S, Schmid MW, Grossniklaus U (2014) Hi-C analysis in Arabidopsis identifies the KNOT, a structure with similarities to the flamenco locus of Drosophila. Mol Cell 55(5):678–693.  https://doi.org/10.1016/j.molcel.2014.07.009CrossRefPubMedGoogle Scholar
  12. 12.
    Dong P, Tu X, Chu PY, Lu P, Zhu N, Grierson D, Du B, Li P, Zhong S (2017) 3D chromatin architecture of large plant genomes determined by local A/B compartments. Mol Plant 10(12):1497–1509.  https://doi.org/10.1016/j.molp.2017.11.005CrossRefPubMedGoogle Scholar
  13. 13.
    Dong Q, Li N, Li X, Yuan Z, Xie D, Wang X, Li J, Yu Y, Wang J, Ding B, Zhang Z, Li C, Bian Y, Zhang A, Wu Y, Liu B, Gong L (2018) Genome-wide Hi-C analysis reveals extensive hierarchical chromatin interactions in rice. Plant J 94(6):1141–1156.  https://doi.org/10.1111/tpj.13925CrossRefPubMedGoogle Scholar
  14. 14.
    Feng S, Cokus SJ, Schubert V, Zhai J, Pellegrini M, Jacobsen SE (2014) Genome-wide Hi-C analyses in wild-type and mutants reveal high-resolution chromatin interactions in Arabidopsis. Mol Cell 55(5):694–707.  https://doi.org/10.1016/j.molcel.2014.07.008CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Liu C, Cheng YJ, Wang JW, Weigel D (2017) Prominent topologically associated domains differentiate global chromatin packing in rice from Arabidopsis. Nat Plants 3(9):742–748.  https://doi.org/10.1038/s41477-017-0005-9CrossRefPubMedGoogle Scholar
  16. 16.
    Wang C, Liu C, Roqueiro D, Grimm D, Schwab R, Becker C, Lanz C, Weigel D (2015) Genome-wide analysis of local chromatin packing in Arabidopsis thaliana. Genome Res 25(2):246–256.  https://doi.org/10.1101/gr.170332.113CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Wang M, Wang P, Lin M, Ye Z, Li G, Tu L, Shen C, Li J, Yang Q, Zhang X (2018) Evolutionary dynamics of 3D genome architecture following polyploidization in cotton. Nat Plants 4(2):90–97.  https://doi.org/10.1038/s41477-017-0096-3CrossRefPubMedGoogle Scholar
  18. 18.
    Zhu W, Hu B, Becker C, Dogan ES, Berendzen KW, Weigel D, Liu C (2017) Altered chromatin compaction and histone methylation drive non-additive gene expression in an interspecific Arabidopsis hybrid. Genome Biol 18(1):157.  https://doi.org/10.1186/s13059-017-1281-4CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Sotelo-Silveira M, Chavez Montes RA, Sotelo-Silveira JR, Marsch-Martinez N, de Folter S (2018) Entering the next dimension: plant genomes in 3D. Trends Plant Sci 23(7):598–612.  https://doi.org/10.1016/j.tplants.2018.03.014CrossRefPubMedGoogle Scholar
  20. 20.
    Borges F, Gardner R, Lopes T, Calarco JP, Boavida LC, Slotkin RK, Martienssen RA, Becker JD (2012) FACS-based purification of Arabidopsis microspores, sperm cells and vegetative nuclei. Plant Methods 8(1):44.  https://doi.org/10.1186/1746-4811-8-44CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Deal RB, Henikoff S (2011) The INTACT method for cell type-specific gene expression and chromatin profiling in Arabidopsis thaliana. Nat Protoc 6(1):56–68.  https://doi.org/10.1038/nprot.2010.175CrossRefPubMedGoogle Scholar
  22. 22.
    Moreno-Romero J, Santos-Gonzalez J, Hennig L, Kohler C (2017) Applying the INTACT method to purify endosperm nuclei and to generate parental-specific epigenome profiles. Nat Protoc 12(2):238–254.  https://doi.org/10.1038/nprot.2016.167CrossRefPubMedGoogle Scholar
  23. 23.
    Weinhofer I, Kohler C (2014) Endosperm-specific chromatin profiling by fluorescence-activated nuclei sorting and ChIP-on-chip. Methods Mol Biol 1112:105–115.  https://doi.org/10.1007/978-1-62703-773-0_7CrossRefPubMedGoogle Scholar
  24. 24.
    Barow M (2006) Endopolyploidy in seed plants. BioEssays 28(3):271–281.  https://doi.org/10.1002/bies.20371CrossRefPubMedGoogle Scholar
  25. 25.
    Liu C (2017) In situ Hi-C library preparation for plants to study their three-dimensional chromatin interactions on a genome-wide scale. Methods Mol Biol 1629:155–166.  https://doi.org/10.1007/978-1-4939-7125-1_11CrossRefPubMedGoogle Scholar
  26. 26.
    Ferretti L, Sgaramella V (1981) Specific and reversible inhibition of the blunt end joining activity of the T4 DNA ligase. Nucleic Acids Res 9(15):3695–3705CrossRefGoogle Scholar
  27. 27.
    Sexton T, Yaffe E, Kenigsberg E, Bantignies F, Leblanc B, Hoichman M, Parrinello H, Tanay A, Cavalli G (2012) Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 148(3):458–472.  https://doi.org/10.1016/j.cell.2012.01.010CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Center for Plant Molecular Biology (ZMBP)University of TübingenTübingenGermany

Personalised recommendations