Advertisement

MCSeEd (Methylation Context Sensitive Enzyme ddRAD): A New Method to Analyze DNA Methylation

  • Marco Di Marsico
  • Elisa Cerruti
  • Cinzia Comino
  • Andrea Porceddu
  • Alberto Acquadro
  • Stefano Capomaccio
  • Gianpiero MarconiEmail author
  • Emidio Albertini
Protocol
  • 174 Downloads
Part of the Methods in Molecular Biology book series (MIMB, volume 2093)

Abstract

Methylation context sensitive enzyme ddRAD (MCSeEd) is a NGS-based method for genome-wide investigations of DNA methylation at different contexts requiring only low to moderate sequencing depth. It is particularly useful for identifying methylation changes in experimental systems challenged by biotic or abiotic stresses or at different developmental stages.

Key words

DNA methylation Methylation context sensitive enzyme ddRAD MCSEeD Sequencing Regulation gene expression Development Zea mays 

References

  1. 1.
    Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11:204–220CrossRefGoogle Scholar
  2. 2.
    Chen T, Li E (2004) Structure and function of eukaryotic DNA methyltransferases. Curr Top Dev Biol 60:55–89CrossRefGoogle Scholar
  3. 3.
    Zemach A, McDaniel IE, Silva P et al (2010) Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science 328:916–919CrossRefGoogle Scholar
  4. 4.
    Chen M, Lv S, Meng Y (2010) Epigenetic performers in plants. Develop Growth Differ 52:555–566CrossRefGoogle Scholar
  5. 5.
    Gehring M, Henikoff S (2007) DNA methylation dynamics in plant genomes. Biochim Biophys Acta Gene Struct Expr 1769:276–286CrossRefGoogle Scholar
  6. 6.
    Zilberman D, Gehring M, Tran RK et al (2007) Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat Genet 39:61–69CrossRefGoogle Scholar
  7. 7.
    Lister R, O’Malley RC, Tonti-Filippini J et al (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133:523–536CrossRefGoogle Scholar
  8. 8.
    Zhang M, Kimatu JN, Xu K et al (2010) DNA cytosine methylation in plant development. J Genet Genomics 37:1–12CrossRefGoogle Scholar
  9. 9.
    Zhang H, Lang Z, Zhu J-K (2018) Dynamics and function of DNA methylation in plants. Nat Rev Mol Cell Biol 19:489–506CrossRefGoogle Scholar
  10. 10.
    Candaele J, Demuynck K, Mosoti D et al (2014) Differential methylation during maize leaf growth targets developmentally regulated genes. Plant Physiol 164:1350–1364CrossRefGoogle Scholar
  11. 11.
    Stevens M, Cheng JB, Li D et al (2013) Estimating absolute methylation levels at single-CpG resolution from methylation enrichment and restriction enzyme sequencing methods. Genome Res 23:1541–1553CrossRefGoogle Scholar
  12. 12.
    Wibowo A, Becker C, Marconi G et al (2016) Hyperosmotic stress memory in Arabidopsis is mediated by distinct epigenetically labile sites in the genome and is restricted in the male germline by DNA glycosylase activity. elife 5Google Scholar
  13. 13.
    Yong W-S, Hsu F-M, Chen P-Y (2016) Profiling genome-wide DNA methylation. Epigenetics Chromatin 9:26CrossRefGoogle Scholar
  14. 14.
    Gu H, Smith ZD, Bock C et al (2011) Preparation of reduced representation bisulfite sequencing libraries for genome-scale DNA methylation profiling. Nat Protoc 6:468–481CrossRefGoogle Scholar
  15. 15.
    Marconi G, Capomaccio S, Comino C, et al (2019) Methylation content sensitive enzyme ddRAD (MCSeEd): a reference-free, whole genome profiling system to address cytosine/adenine methylation changes. Scientific Reports  https://doi.org/10.1038/s41598-019-51423-2
  16. 16.
    Peterson BK, Weber JN, Kay EH et al (2012) Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS One 7Google Scholar
  17. 17.
    Regulski M, Lu Z, Kendall J et al (2013) The maize methylome influences mRNA splice sites and reveals widespread paramutation-like switches guided by small RNA. Genome Res 23:1651–1662CrossRefGoogle Scholar
  18. 18.
    Maunakea AK, Nagarajan RP, Bilenky M et al (2010) Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 466:253–257CrossRefGoogle Scholar
  19. 19.
    Catchen JM, Amores A, Hohenlohe P et al (2011) Stacks: building and genotyping loci de novo from short-read sequences. G3 Genes Genomes Genet 1:171–182Google Scholar
  20. 20.
    Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079CrossRefGoogle Scholar
  21. 21.
    Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–842CrossRefGoogle Scholar
  22. 22.
    Liao Y, Smyth GK, Shi W (2014) FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923–930CrossRefGoogle Scholar
  23. 23.
    Akalin A, Kormaksson M, Li S et al (2012) MethylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biol 13:R87CrossRefGoogle Scholar
  24. 24.
    Chong Z, Ruan J, Wu C-I (2012) Rainbow: an integrated tool for efficient clustering and assembling RAD-seq reads. Bioinformatics 28:2732–2737CrossRefGoogle Scholar
  25. 25.
    Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22:1658–1659CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Marco Di Marsico
    • 1
  • Elisa Cerruti
    • 2
  • Cinzia Comino
    • 2
  • Andrea Porceddu
    • 3
  • Alberto Acquadro
    • 2
  • Stefano Capomaccio
    • 4
  • Gianpiero Marconi
    • 1
    Email author
  • Emidio Albertini
    • 1
  1. 1.Department of Agricultural, Food and Environmental SciencesUniversity of PerugiaPerugiaItaly
  2. 2.Department of Agricultural, Forest and Food Sciences, Plant Genetics and BreedingUniversity of TorinoGrugliascoItaly
  3. 3.Department of AgricultureUniversity of SassariSassariItaly
  4. 4.Department of Veterinary MedicineUniversity of PerugiaPerugiaItaly

Personalised recommendations