Chromatin Analysis of Metabolic Gene Clusters in Plants

  • Ancheng C. HuangEmail author
  • Hans-Wilhelm NützmannEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 2093)


Plant metabolic gene clusters consist of neighboring genes that are involved in the biosynthesis of secondary or specialized metabolites. The genes within clusters are typically co-regulated, share a common set of chromatin marks, and code for the biosynthesis enzymes of a single metabolic pathway. Here, we describe three essential protocols for the basic analysis of metabolic gene clusters at transcription, histone modification, and metabolite level. The protocols are specified to clusters in the Arabidopsis thaliana genome and are transferable to other plant species.

Key words

Gene cluster Metabolism Chromatin modifications Triterpene 



This work was supported by startup funding from the Southern University of Science and Technology and Shenzhen municipal government (ACH) and the Royal Society University Research Fellowship (UF160138) (HWN).


  1. 1.
    Hurst LD, Pál C, Lercher MJ (2004) The evolutionary dynamics of eukaryotic gene order. Nat Rev Genet 5:299–310CrossRefGoogle Scholar
  2. 2.
    Nützmann HW, Huang A, Osbourn A (2016) Plant metabolic clusters – from genetics to genomics. New Phytol 211:771–789CrossRefGoogle Scholar
  3. 3.
    Boycheva S, Daviet L, Wolfender JL, Fitzpatrick TB (2014) The rise of operon-like gene clusters in plants. Trends Plant Sci 19:447–459CrossRefGoogle Scholar
  4. 4.
    Nützmann HW, Osbourn A (2015) Regulation of metabolic gene clusters in Arabidopsis thaliana. New Phytol 205:503–510CrossRefGoogle Scholar
  5. 5.
    Yu N, Nützmann HW, MacDonald JT, Moore B, Field B, Berriri S et al (2016) Delineation of metabolic gene clusters in plant genomes by chromatin signatures. Nucleic Acids Res 44:2255–2265CrossRefGoogle Scholar
  6. 6.
    Hong SM, Bahn SC, Lyu A, Jung HS, Ahn JH (2010) Identification and testing of superior reference genes for a starting pool of transcript normalization in Arabidopsis. Plant Cell Physiol 51:1694–1706CrossRefGoogle Scholar
  7. 7.
    Song J, Rutjens B, Dean C (2014) Detecting histone modifications in plants. Methods Mol Biol 1112:165–175CrossRefGoogle Scholar
  8. 8.
    Gowda H, Ivanisevic J, Johnson CH, Kurczy ME, Benton HP, Rinehart D et al (2014) Interactive XCMS online: simplifying advanced metabolomic data processing and subsequent statistical analyses. Anal Chem 86:6931–6939CrossRefGoogle Scholar
  9. 9.
    Rajniak J, Barco B, Clay NK, Sattely ES (2015) A new cyanogenic metabolite in Arabidopsis required for inducible pathogen defence. Nature 525:376–379CrossRefGoogle Scholar
  10. 10.
    Field B, Fiston-Lavier AS, Kemen A, Geisler K, Quesneville H, Osbourn AE (2011) Formation of plant metabolic gene clusters within dynamic chromosomal regions. Proc Natl Acad Sci U S A 108:16116–16121CrossRefGoogle Scholar
  11. 11.
    Field B, Osbourn AE (2008) Metabolic diversification – independent assembly of operon-like gene clusters in different plants. Science 320:543–547CrossRefGoogle Scholar
  12. 12.
    Sohrabi R, Huh JH, Badieyan S, Rakotondraibe LH, Kliebenstein DJ, Sobrado P, Tholl D (2015) In planta variation of volatile biosynthesis: an alternative biosynthetic route to the formation of the pathogen-induced volatile homoterpene DMNT via triterpene degradation in Arabidopsis roots. Plant Cell 27:874–890CrossRefGoogle Scholar
  13. 13.
    Huang AC, Kautsar SA, Hong YJ, Medema MH, Bond AD, Tantillo DJ, Osbourn A (2017) Unearthing a sesterterpene biosynthetic repertoire in the Brassicaceae through genome mining reveals convergent evolution. Proc Natl Acad Sci U S A 114:E6005–E6014CrossRefGoogle Scholar
  14. 14.
    Huang AC, Jiang T, Liu YX, Bai YC, Reed J, Qu B, Goossens A, Nützmann HW, Bai Y, Osbourn A (2019) A specialized metabolic network selectively modulates Arabidopsis root microbiota. Science 364: pii: eaau6389CrossRefGoogle Scholar
  15. 15.
    De Lucia F, Crevillen P, Jones AM, Greb T, Dean C (2008) A PHD-polycomb repressive complex 2 triggers the epigenetic silencing of FLC during vernalization. Proc Natl Acad Sci U S A 105:16831–16836CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Institute of Plant and Food Science, Department of BiologySouthern University of Science and TechnologyShenzhenChina
  2. 2.The Milner Centre for EvolutionUniversity of BathBathUK

Personalised recommendations