Advertisement

Dictyostelium discoideum as a Model to Study Inositol Polyphosphates and Inorganic Polyphosphate

  • Yann Desfougères
  • Adolfo SaiardiEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2091)

Abstract

The yeast Saccharomyces cerevisiae has given us much information on the metabolism and function of inositol polyphosphates and inorganic polyphosphate. To expand our knowledge of the metabolic as well as functional connections between inositol polyphosphates and inorganic polyphosphate, we have refined and developed techniques to extract and analyze these molecules in a second eukaryotic experimental model, the amoeba Dictyostelium discoideum. This amoeba, possessing a well-defined developmental program, is ideal to study physiological changes in the levels of inositol polyphosphates and inorganic polyphosphate, since levels of both molecules increase at late stages of development. We detail here the methods used to extract inositol polyphosphates using perchloric acid and inorganic polyphosphate using acidic phenol. We also present the postextraction procedures to visualize and quantify these molecules by polyacrylamide gel electrophoresis and by malachite green assay.

Key words

Inositol polyphosphate Extraction DAPI staining Toluidine blue Electrophoresis polyP Inositol pyrophosphate Phytic acid 

Notes

Acknowledgments

We thank the Saiardi lab for suggestions and reading of the manuscript. This work was supported by the Medical Research Council (MRC) core support to the MRC/UCL Laboratory for Molecular Cell Biology University Unit MC_UU_12018/4 and MC_UU_00012/4. YD was supported by a Marie Skłodowska-Curie grant (agreement PHEMDD No 752903).

References

  1. 1.
    Azevedo C, Saiardi A (2014) Functions of inorganic polyphosphates in eukaryotic cells: a coat of many colours. Biochem Soc Trans 42(1):98–102.  https://doi.org/10.1042/BST20130111CrossRefPubMedGoogle Scholar
  2. 2.
    Rao NN, Gomez-Garcia MR, Kornberg A (2009) Inorganic polyphosphate: essential for growth and survival. Annu Rev Biochem 78:605–647.  https://doi.org/10.1146/annurev.biochem.77.083007.093039CrossRefPubMedGoogle Scholar
  3. 3.
    Michell RH (2008) Inositol derivatives: evolution and functions. Nat Rev Mol Cell Biol 9(2):151–161. nrm2334 [pii].  https://doi.org/10.1038/nrm2334CrossRefPubMedGoogle Scholar
  4. 4.
    Livermore TM, Azevedo C, Kolozsvari B, Wilson MS, Saiardi A (2016) Phosphate, inositol and polyphosphates. Biochem Soc Trans 44(1):253–259.  https://doi.org/10.1042/BST20150215CrossRefPubMedGoogle Scholar
  5. 5.
    Shears SB (2015) Inositol pyrophosphates: why so many phosphates? Adv Biol Regul 57:203–216.  https://doi.org/10.1016/j.jbior.2014.09.015CrossRefPubMedGoogle Scholar
  6. 6.
    Wilson MS, Livermore TM, Saiardi A (2013) Inositol pyrophosphates: between signalling and metabolism. Biochem J 452(3):369–379.  https://doi.org/10.1042/BJ20130118CrossRefPubMedGoogle Scholar
  7. 7.
    Lonetti A, Szijgyarto Z, Bosch D, Loss O, Azevedo C, Saiardi A (2011) Identification of an evolutionarily conserved family of inorganic polyphosphate endopolyphosphatases. J Biol Chem 286(37):31966–31974. M111.266320 [pii].  https://doi.org/10.1074/jbc.M111.266320CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Wild R, Gerasimaite R, Jung JY, Truffault V, Pavlovic I, Schmidt A, Saiardi A, Jessen HJ, Poirier Y, Hothorn M, Mayer A (2016) Control of eukaryotic phosphate homeostasis by inositol polyphosphate sensor domains. Science 352(6288):986–990.  https://doi.org/10.1126/science.aad9858CrossRefPubMedGoogle Scholar
  9. 9.
    Odom AR, Stahlberg A, Wente SR, York JD (2000) A role for nuclear inositol 1,4,5-trisphosphate kinase in transcriptional control. Science 287(5460):2026–2029CrossRefGoogle Scholar
  10. 10.
    Saiardi A, Caffrey JJ, Snyder SH, Shears SB (2000) The inositol hexakisphosphate kinase family. Catalytic flexibility and function in yeast vacuole biogenesis. J Biol Chem 275(32):24686–24692CrossRefGoogle Scholar
  11. 11.
    Saiardi A, Caffrey JJ, Snyder SH, Shears SB (2000) Inositol polyphosphate multikinase (ArgRIII) determines nuclear mRNA export in Saccharomyces cerevisiae. FEBS Lett 468(1):28–32CrossRefGoogle Scholar
  12. 12.
    Saiardi A, Erdjument-Bromage H, Snowman AM, Tempst P, Snyder SH (1999) Synthesis of diphosphoinositol pentakisphosphate by a newly identified family of higher inositol polyphosphate kinases. Curr Biol 9(22):1323–1326CrossRefGoogle Scholar
  13. 13.
    York JD, Odom AR, Murphy R, Ives EB, Wente SR (1999) A phospholipase C-dependent inositol polyphosphate kinase pathway required for efficient messenger RNA export. Science 285(5424):96–100CrossRefGoogle Scholar
  14. 14.
    Saiardi A, Resnick AC, Snowman AM, Wendland B, Snyder SH (2005) Inositol pyrophosphates regulate cell death and telomere length through phosphoinositide 3-kinase-related protein kinases. Proc Natl Acad Sci U S A 102(6):1911–1914CrossRefGoogle Scholar
  15. 15.
    Saiardi A, Sciambi C, McCaffery JM, Wendland B, Snyder SH (2002) Inositol pyrophosphates regulate endocytic trafficking. Proc Natl Acad Sci U S A 99(22):14206–14211CrossRefGoogle Scholar
  16. 16.
    York SJ, Armbruster BN, Greenwell P, Petes TD, York JD (2005) Inositol diphosphate signaling regulates telomere length. J Biol Chem 280(6):4264–4269CrossRefGoogle Scholar
  17. 17.
    Lander N, Ulrich PN, Docampo R (2013) Trypanosoma brucei vacuolar transporter chaperone 4 (TbVtc4) is an acidocalcisome polyphosphate kinase required for in vivo infection. J Biol Chem 288(47):34205–34216.  https://doi.org/10.1074/jbc.M113.518993CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Zhang H, Gomez-Garcia MR, Shi X, Rao NN, Kornberg A (2007) Polyphosphate kinase 1, a conserved bacterial enzyme, in a eukaryote, dictyostelium discoideum, with a role in cytokinesis. Proc Natl Acad Sci U S A 104(42):16486–16491. 0706847104 [pii].  https://doi.org/10.1073/pnas.0706847104CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Livermore TM, Chubb JR, Saiardi A (2016) Developmental accumulation of inorganic polyphosphate affects germination and energetic metabolism in dictyostelium discoideum. Proc Natl Acad Sci U S A 113(4):996–1001.  https://doi.org/10.1073/pnas.1519440113CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Europe-Finner GN, Gammon B, Newell PC (1991) Accumulation of [3H]-inositol into inositol polyphosphates during development of dictyostelium. Biochem Biophys Res Commun 181(1):191–196CrossRefGoogle Scholar
  21. 21.
    Newell PC, Europe-Finner GN, Small NV, Liu G (1988) Inositol phosphates, G-proteins and ras genes involved in chemotactic signal transduction of dictyostelium. J Cell Sci 89(Pt 2):123–127PubMedGoogle Scholar
  22. 22.
    Stephens LR, Irvine RF (1990) Stepwise phosphorylation of myo-inositol leading to myo-inositol hexakisphosphate in Dictyostelium. Nature 346(6284):580–583CrossRefGoogle Scholar
  23. 23.
    Stephens L, Radenberg T, Thiel U, Vogel G, Khoo KH, Dell A, Jackson TR, Hawkins PT, Mayr GW (1993) The detection, purification, structural characterization, and metabolism of diphosphoinositol pentakisphosphate(s) and bisdiphosphoinositol tetrakisphosphate(s). J Biol Chem 268(6):4009–4015PubMedGoogle Scholar
  24. 24.
    Losito O, Szijgyarto Z, Resnick AC, Saiardi A (2009) Inositol pyrophosphates and their unique metabolic complexity: analysis by gel electrophoresis. PLoS One 4(5):e5580.  https://doi.org/10.1371/journal.pone.0005580CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Pisani F, Livermore T, Rose G, Chubb JR, Gaspari M, Saiardi A (2014) Analysis of Dictyostelium discoideum inositol pyrophosphate metabolism by gel electrophoresis. PLoS One 9(1):e85533.  https://doi.org/10.1371/journal.pone.0085533CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Smith SA, Morrissey JH (2007) Sensitive fluorescence detection of polyphosphate in polyacrylamide gels using 4′,6-diamidino-2-phenylindol. Electrophoresis 28(19):3461–3465.  https://doi.org/10.1002/elps.200700041CrossRefPubMedGoogle Scholar
  27. 27.
    Loss O, Azevedo C, Szijgyarto Z, Bosch D, Saiardi A (2011) Preparation of quality inositol pyrophosphates. J Vis Exp (55):e3027.  https://doi.org/10.3791/3027

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Medical Research Council Laboratory for Molecular Cell BiologyUniversity College LondonLondonUK

Personalised recommendations