Advertisement

Measuring Small Molecule Binding to Escherichia coli AcrB by Surface Plasmon Resonance

  • Steven W. Polyak
  • Rumana Mowla
  • Henrietta VenterEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2089)

Abstract

Antimicrobial resistance (AMR) is rapidly becoming one of the great healthcare challenges. A common mechanism employed by pathogenic bacteria to avoid the action of certain antibiotics is to overexpress efflux pumps that can extrude these drugs from the cell rendering them ineffective. Small molecule inhibitors that target bacterial efflux pumps provide a route toward reversing AMR. Here, we describe the application of surface plasmon resonance (SPR) technology to characterize protein:small molecule interactions between the inner membrane protein AcrB subunit of the Escherichia coli AcrA-AcrB-TolC efflux pump and its substrates and novel inhibitors. The SPR assay provides quantitative data about the kinetics of binding that can help guide the development of new chemotherapies to combat AMR.

Key words

Surface plasmon resonance Binding kinetics Small molecule Efflux pumps Antimicrobial resistance Antibiotic discovery AcrA-AcrB-TolC Efflux pump inhibitors 

Notes

Acknowledgments

This research was supported financially by the National Natural Science Foundation of China (81673284), National Health and Medical Research Council of Australia (GN1147538), China–Australia Centre for Health Sciences Research and Australian Postgraduate Award (RM). All experiments were performed on a BiaCore 200 which from part of the Biophysical Characterisation Suite at The University of South Australia.

References

  1. 1.
    Theuretzbacher U (2017) Global antimicrobial resistance in Gram-negative pathogens and clinical need. Curr Opin Microbiol 39:106–112CrossRefGoogle Scholar
  2. 2.
    Butler MS, Blaskovich MA, Cooper MA (2017) Antibiotics in the clinical pipeline at the end of 2015. J Antibiot (Tokyo) 70:3–24CrossRefGoogle Scholar
  3. 3.
    Wang Y, Venter H, Ma S (2016) Efflux pump inhibitors: a novel approach to combat efflux-mediated drug resistance in bacteria. Curr Drug Targets 17:702–719CrossRefGoogle Scholar
  4. 4.
    Spengler G, Kincses A, Gajdács M, Amaral L (2017) New roads leading to old destinations: efflux pumps as targets to reverse multidrug resistance in bacteria. Molecules 22:468CrossRefGoogle Scholar
  5. 5.
    Ruggerone P, Murakami S, Pos KM, Vargiu AV (2013) RND efflux pumps: structural information translated into function and inhibition mechanisms. Curr Top Med Chem 13:3079–3100CrossRefGoogle Scholar
  6. 6.
    Venter H, Mowla R, Ohene-Agyei T, Ma S (2015) RND-type drug efflux pumps from Gram-negative bacteria: molecular mechanism and inhibition. Front Microbiol 6:377CrossRefGoogle Scholar
  7. 7.
    Nikaido H, Pagès JM (2012) Broad-specificity efflux pumps and their role in multidrug resistance of Gram-negative bacteria. FEMS Microbiol Rev 36:340–363CrossRefGoogle Scholar
  8. 8.
    Arzanlou M, Chai WC, Venter H (2017) Intrinsic, adaptive and acquired antimicrobial resistance in Gram-negative bacteria. Essays Biochem 61:49–59CrossRefGoogle Scholar
  9. 9.
    Masi M, Réfregiers M, Pos KM, Pagès JM (2017) Mechanisms of envelope permeability and antibiotic influx and efflux in Gram-negative bacteria. Nat Microbiol 2:17001CrossRefGoogle Scholar
  10. 10.
    Zwama M, Yamaguchi A (2018) Molecular mechanisms of AcrB-mediated multidrug export. Res Microbiol 169:372–383CrossRefGoogle Scholar
  11. 11.
    Opperman TJ, Nguyen ST (2015) Recent advances toward a molecular mechanism of efflux pump inhibition. Front Microbiol 6:421CrossRefGoogle Scholar
  12. 12.
    Blair JM, Bavro VN, Ricci V, Modi N, Cacciotto P, Kleinekathӧfer U, Ruggerone P, Vargiu AV, Baylay AJ, Smith HE et al (2015) AcrB drug-binding pocket substitution confers clinically relevant resistance and altered substrate specificity. Proc Natl Acad Sci U S A 112:3511–3516CrossRefGoogle Scholar
  13. 13.
    Wang Y, Mowla R, Guo L, Ogunniyi AD, Rahman T, De Barros Lopes MA, Ma S, Venter H (2017) Evaluation of a series of 2-napthamide derivatives as inhibitors of the drug efflux pump AcrB for the reversal of antimicrobial resistance. Bioorg Med Chem Lett 27:733–739CrossRefGoogle Scholar
  14. 14.
    Wang Y, Mowla R, Ji S, Guo L, De Barros Lopes MA, Jin C, Song D, Ma S, Venter H (2018) Design, synthesis and biological activity evaluation of novel 4-subtituted 2-naphthamide derivatives as AcrB inhibitors. Eur J Med Chem 143:699–709CrossRefGoogle Scholar
  15. 15.
    Vargiu AV, Ruggerone P, Opperman TJ, Nguyen ST, Nikaido H (2014) Molecular mechanism of MBX2319 inhibition of Escherichia coli AcrB multidrug efflux pump and comparison with other inhibitors. Antimicrob Agents Chemother 58:6224–6234CrossRefGoogle Scholar
  16. 16.
    Aparna V, Dineshkumar K, Mohanalakshmi N, Velmurugan D, Hopper W (2014) Identification of natural compound inhibitors for multidrug efflux pumps of Escherichia coli and Pseudomonas aeruginosa using in silico high-throughput virtual screening and in vitro validation. PLoS One 9:e101840CrossRefGoogle Scholar
  17. 17.
    Handzlik J, Szymańska E, Alibert S, Chevalier J, Otrębska E, Pękala E, Pagès JM, Kieć-Kononowicz K (2013) Search for new tools to combat Gram-negative resistant bacteria among amine derivatives of 5-arylidenehydantoin. Bioorg Med Chem 21:135–145CrossRefGoogle Scholar
  18. 18.
    Opperman TJ, Kwasny SM, Kim HS, Nguyen ST, Houseweart C, D’Souza S, Walker GC, Peet NP, Nikaido H, Bowlin TL (2014) Characterization of a novel pyranopyridine inhibitor of the AcrAB efflux pump of Escherichia coli. Antimicrob Agents Chemother 58:722–733CrossRefGoogle Scholar
  19. 19.
    Nguyen ST, Kwasny SM, Ding X, Cardinale SC, McCarthy CT, Kim HS, Nikaido H, Peet NP, Williams JD, Bowlin TL et al (2015) Structure-activity relationships of a novel pyranopyridine series of Gram-negative bacterial efflux pump inhibitors. Bioorg Med Chem 23:2024–2034CrossRefGoogle Scholar
  20. 20.
    Sjuts H, Vargiu AV, Kwasny SM, Nguyen ST, Kim HS, Ding X, Ornik AR, Ruggerone P, Bowlin TL, Nikaido H et al (2016) Molecular basis for inhibition of AcrB multidrug efflux pump by novel and powerful pyranopyridine derivatives. Proc Natl Acad Sci U S A 113:3509–3514CrossRefGoogle Scholar
  21. 21.
    Choudhury D, Talukdar AD, Chetia P, Bhattacharjee A, Choudhury MD (2016) Screening of natural products and derivatives for the identification of RND efflux pump inhibitors. Comb Chem High Throughput Screen 19:705–713CrossRefGoogle Scholar
  22. 22.
    Ohene-Agyei T, Mowla R, Rahman T, Venter H (2014) Phytochemicals increase the antibacterial activity of antibiotics by acting on a drug efflux pump. Microbiology 3:885–896Google Scholar
  23. 23.
    Lomovskaya O, Warren MS, Lee A, Galazzo J, Fronko R, Lee M, Blais J, Cho D, Chamberland S, Renau T et al (2001) Identification and characterization of inhibitors of multidrug resistance efflux pumps in Pseudomonas aeruginosa: novel agents for combination therapy. Antimicrob Agents Chemother 45:105–116CrossRefGoogle Scholar
  24. 24.
    Nakashima R, Sakurai K, Yamasaki S, Nishino K, Yamaguchi A (2011) Structures of the multidrug exporter AcrB reveal a proximal multisite drug-binding pocket. Nature 480:565–569CrossRefGoogle Scholar
  25. 25.
    Hung LW, Kim HB, Murakami S, Gupta G, Kim CY, Terwilliger TC (2013) Crystal structure of AcrB complexed with linezolid at 3.5 Å resolution. J Struct Funct Genom 14:71–75CrossRefGoogle Scholar
  26. 26.
    Ababou A, Koronakis V (2016) Structures of gate loop variants of the AcrB drug efflux pump bound by erythromycin substrate. PLoS One 11:e0159154CrossRefGoogle Scholar
  27. 27.
    Eicher T, Cha HJ, Seeger MA, Brandstätter L, El-Delik J, Bohnert JA, Kern WV, Verrey F, Grütter MG, Diederichs K et al (2012) Transport of drugs by the multidrug transporter AcrB involves an access and a deep binding pocket that are separated by a switch-loop. Proc Natl Acad Sci U S A 109:5687–5692CrossRefGoogle Scholar
  28. 28.
    Murakami S, Nakashima R, Yamashita E, Matsumoto T, Yamaguchi A (2006) Crystal structures of a multidrug transporter reveal a functionally rotating mechanism. Nature 443:173–179CrossRefGoogle Scholar
  29. 29.
    Nakashima R, Sakurai K, Yamasaki S, Hayashi K, Nagata C, Hoshino K, Onodera Y, Nishino K, Yamaguchi A (2013) Structural basis for the inhibition of bacterial multidrug exporters. Nature 500:102–106CrossRefGoogle Scholar
  30. 30.
    Wang Z, Fan G, Hryc CF, Blaza JN, Serysheva II, Schmid MF, Chiu W, Luisi BF, Du D (2017) An allosteric transport mechanism for the AcrAB-TolC multidrug efflux pump. Elife 6:e24905CrossRefGoogle Scholar
  31. 31.
    Damborský P, Švitel J, Katrlík J (2016) Optical biosensors. Essays Biochem 60:91–100CrossRefGoogle Scholar
  32. 32.
    Tikhonova EB, Yamada Y, Zgurskaya HI (2011) Sequential mechanism of assembly of multidrug efflux pump AcrAB-TolC. Chem Biol 18:454–463CrossRefGoogle Scholar
  33. 33.
    Mowla R, Wang Y, Ma S, Venter H (2018) Kinetic analysis of the inhibition of the drug efflux protein AcrB using surface plasmon resonance. Biochim Biophys Acta Biomembr 1860:878–886CrossRefGoogle Scholar
  34. 34.
    Tikhonova EB, Zgurskaya HI (2013) Assessment of multidrug efflux assemblies by surface plasmon resonance. Methods Mol Biol 966:133–155CrossRefGoogle Scholar
  35. 35.
    Zheng H, Taraska J, Merz AJ, Gonen T (2010) The prototypical H+/galactose symporter GalP assembles into functional trimers. J Mol Biol 396:593–601CrossRefGoogle Scholar
  36. 36.
    Venter H, Ashcroft AE, Keen JN, Henderson PJ, Herbert RB (2002) Molecular dissection of membrane-transport proteins: mass spectrometry and sequence determination of the galactose-H+ symport protein, GalP, of Escherichia coli and quantitative assay of the incorporation of [ring-2-13C]histidine and (15)NH(3). Biochem J 363:243–252PubMedPubMedCentralGoogle Scholar
  37. 37.
    Ward A, Hoyle C, Palmer S, O’Reilly J, Griffith J, Pos M, Morrison S, Poolman B, Gwynne M, Henderson P (2001) Prokaryote multidrug efflux proteins of the major facilitator superfamily: amplified expression, purification and characterisation. J Mol Microbiol Biotechnol 3:193–200PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2020

Authors and Affiliations

  • Steven W. Polyak
    • 1
  • Rumana Mowla
    • 1
  • Henrietta Venter
    • 1
    Email author
  1. 1.School of Pharmacy and Medical SciencesUniversity of South AustraliaAdelaideAustralia

Personalised recommendations