Advertisement

The In Silico Fischer Lock-and-Key Model: The Combined Use of Molecular Descriptors and Docking Poses for the Repurposing of Old Drugs

  • Marco TutoneEmail author
  • Anna Maria Almerico
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2089)

Abstract

Not always lead compound and/or derivatives are suitable for the specific biological target for which they are designed but, in some cases, discarded compounds proved to be good binders for other biological targets; therefore, drug repurposing constitute a valid alternative to avoid waste of human and financial resources. Our virtual lock-and-key methods, VLKA and Conf-VLKA, furnish a strong support to predict the efficacy of a designed drug a priori its biological evaluation, or the correct biological target for a set of the selected compounds, allowing thus the repurposing of known and unknown, active and inactive compounds.

Key words

Lock-and-key model Molecular docking Descriptors Drug repurposing Statistics 

Notes

Acknowledgements

The work reported in this chapter is based on the reference [17] (Tutone M, Perricone U, Almerico AM (2017) Conf-VLKA: A structure-based revisitation of the virtual lock-and-key approach. J Mol Graph Model 71:50–57. doi: 10.1016/j.jmgm.2016.11.006) and was adapted with permission.

References

  1. 1.
    Dimasi JA, Feldman L, Seckler A, Wilson A (2010) Trends in risks associated with new drug development: success rates for investigational drugs. Clin Pharmacol Ther 87:272–277.  https://doi.org/10.1038/clpt.2009.295CrossRefPubMedGoogle Scholar
  2. 2.
    Dickson M, Gagnon JP (2004) Key factors in the rising cost of new drug discovery and development. Nat Rev Drug Discov 3:417–429.  https://doi.org/10.1038/nrd1382CrossRefPubMedGoogle Scholar
  3. 3.
    Peterson RT (2008) Chemical biology and the limits of reductionism. Nat Chem Biol 4:635–638.  https://doi.org/10.1038/nchembio1108-635CrossRefPubMedGoogle Scholar
  4. 4.
    Nobeli I, Favia AD, Thornton JM (2009) Protein promiscuity and its implications for biotechnology. Nat Biotechnol 27:157–167.  https://doi.org/10.1038/nbt1519CrossRefPubMedGoogle Scholar
  5. 5.
    Reddy AS, Zhang S (2013) Polypharmacology: drug discovery for the future. Expert Rev Clin Pharmacol 6:41–77.  https://doi.org/10.1586/ecp.12.74CrossRefPubMedGoogle Scholar
  6. 6.
    Hopkins AL (2008) Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 4:682–690.  https://doi.org/10.1038/nchembio.118CrossRefPubMedGoogle Scholar
  7. 7.
    Peters JU (2013) Polypharmacology—foe or friend? J Med Chem 56:8955–8971.  https://doi.org/10.1021/jm400856tCrossRefPubMedGoogle Scholar
  8. 8.
    Overington JP, Al-Lazikani B, Hopkins AL (2006) How many drug targets are there? Nat Rev Drug Discov 5:993–996.  https://doi.org/10.1038/nrd2199CrossRefPubMedGoogle Scholar
  9. 9.
    Hopkins AL, Mason JS, Overington JP (2006) Can we rationally design promiscuous drugs? Curr Opin Struct Biol 15:104–111.  https://doi.org/10.1016/j.sbi.2006.01.013CrossRefGoogle Scholar
  10. 10.
    Aislyn DW, Boran RI (2010) Systems approaches to polypharmacology and drug discovery. Curr Opin Drug Discov Devel 13:297–309.  https://doi.org/10.1126/scisignal.2001965.IntroductionCrossRefGoogle Scholar
  11. 11.
    Anighoro A, Bajorath J, Rastelli G (2014) Polypharmacology: challenges and opportunities in drug discovery. J Med Chem 57:7874–7887.  https://doi.org/10.1021/jm5006463CrossRefPubMedGoogle Scholar
  12. 12.
    Gujral TS, Peshkin L, Kirschner MW (2014) Exploiting polypharmacology for drug target deconvolution. Proc Natl Acad Sci 111:5048–5053.  https://doi.org/10.1073/pnas.1403080111CrossRefPubMedGoogle Scholar
  13. 13.
    Fischer E (1895) Ueber den Einfluss der Konfiguration auf die Wirkung der Enzyme III. Berichte der Dtsch Chem Gesellschaft 28:1429–1438.  https://doi.org/10.1002/cber.18950280243CrossRefGoogle Scholar
  14. 14.
    Forster MO (1920) Emil Fischer memorial lecture. J Chem Soc Trans 117:1157–1201.  https://doi.org/10.1039/CT9201701157CrossRefGoogle Scholar
  15. 15.
    Fischer E (1899) Bedeutung der Stereochemie für die Physiologie. Hoppe Seylers Z Physiol Chem.  https://doi.org/10.1515/bchm2.1899.26.1-2.60CrossRefGoogle Scholar
  16. 16.
    Lauria A, Tutone M, Almerico AM (2011) Virtual lock-and-key approach: the in silico revival of Fischer model by means of molecular descriptors. Eur J Med Chem 46:4274–4280.  https://doi.org/10.1016/j.ejmech.2011.06.033CrossRefPubMedGoogle Scholar
  17. 17.
    Tutone M, Perricone U, Almerico AM (2017) Conf-VLKA: a structure-based revisitation of the Virtual Lock-and-Key Approach. J Mol Graph Model 71:50–57.  https://doi.org/10.1016/j.jmgm.2016.11.006CrossRefPubMedGoogle Scholar
  18. 18.
    Lauria A, Ippolito M, Almerico AM (2009) Principal component analysis on molecular descriptors as an alternative point of view in the search of new Hsp90 inhibitors. Comput Biol Chem 33:386–390.  https://doi.org/10.1016/j.compbiolchem.2009.07.010CrossRefPubMedGoogle Scholar
  19. 19.
    Lauria A, Tutone M, Barone G, Almerico AM (2014) Multivariate analysis in the identification of biological targets for designed molecular structures: the BIOTA protocol. Eur J Med Chem 75:106–110.  https://doi.org/10.1016/j.ejmech.2014.01.025CrossRefPubMedGoogle Scholar
  20. 20.
    Lauria A, Patella C, Abbate I et al (2012) Lead optimization through VLAK protocol: new annelated pyrrolo-pyrimidine derivatives as antitumor agents. Eur J Med Chem 55:375–383.  https://doi.org/10.1016/j.ejmech.2012.07.046CrossRefPubMedGoogle Scholar
  21. 21.
    Lauria A, Abbate I, Patella C et al (2013) New annelated thieno[2,3-e][1,2,3]triazolo[1,5-a]pyrimidines, with potent anticancer activity, designed through VLAK protocol. Eur J Med Chem 62:416–424.  https://doi.org/10.1016/j.ejmech.2013.01.019CrossRefPubMedGoogle Scholar
  22. 22.
    Liu T, Lin Y, Wen X et al (2007) BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res 35:D198–D201.  https://doi.org/10.1093/nar/gkl999CrossRefPubMedGoogle Scholar
  23. 23.
    Karelson M, Lobanov VS, Katritzky AR (1996) Quantum-chemical descriptors in QSAR/QSPR studies. Chem Rev 96:1027–1044.  https://doi.org/10.1021/cr950202rCrossRefPubMedGoogle Scholar
  24. 24.
    LigPrep, version 2.5. In: Suite. Schrödinger, LLC, New York NY; 2012Google Scholar
  25. 25.
    Rogers D, Brown RD, Hahn M (2005) Using extended-connectivity fingerprints with Laplacian-modified Bayesian analysis in high-throughput screening follow-up. J Biomol Screen 10:682–686.  https://doi.org/10.1177/1087057105281365CrossRefPubMedGoogle Scholar
  26. 26.
    Duan J, Dixon SL, Lowrie JF, Sherman W (2010) Analysis and comparison of 2D fingerprints: insights into database screening performance using eight fingerprint methods. J Mol Graph Model 29:157–170.  https://doi.org/10.1016/j.jmgm.2010.05.008CrossRefPubMedGoogle Scholar
  27. 27.
    Gilbert G (1972) Distance between sets. Nature 239:174.  https://doi.org/10.1038/239174c0CrossRefGoogle Scholar
  28. 28.
    Sastry M, Lowrie JF, Dixon SL, Sherman W (2010) Large-scale systematic analysis of 2D fingerprint methods and parameters to improve virtual screening enrichments. J Chem Inf Model 50:771–784.  https://doi.org/10.1021/ci100062nCrossRefPubMedGoogle Scholar
  29. 29.
    Dutta S, Berman MH, Bluhm FW (2005) RCSB Protein Data Bank. Curr Prot Bioinformatics chapter 1: Unit 1.9. doi:  https://doi.org/10.1002/0471250953.bi0109s20
  30. 30.
    Maestro, version 9.4, Schrödinger, LLC, New York, NY; 2013Google Scholar
  31. 31.
    Halgren TA, Murphy RB, Friesner RA et al (2004) Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 47:1750–1759.  https://doi.org/10.1021/jm030644sCrossRefPubMedGoogle Scholar
  32. 32.
    Martin YC, Kofron JL, Traphagen LM (2002) Do structurally similar molecules have similar biological activity? J Med Chem 45:4350–4358.  https://doi.org/10.1021/jm020155cCrossRefPubMedGoogle Scholar
  33. 33.
    Kubinyi H (2002) Chemical similarity and biological activities. J Braz Chem Soc 13:717–726.  https://doi.org/10.1590/S0103-50532002000600002CrossRefGoogle Scholar
  34. 34.
    Marona-Lewicka D, Nichols DE (2007) Further evidence that the delayed temporal dopaminergic effects of LSD are mediated by a mechanism different than the first temporal phase of action. Pharmacol Biochem Behav 87:453–461.  https://doi.org/10.1016/j.pbb.2007.06.001CrossRefPubMedGoogle Scholar
  35. 35.
    Marona-Lewicka D, Nichols DE (2009) WAY 100635 produces discriminative stimulus effects in rats mediated by dopamine D4 receptor activation. Behav Pharmacol 20:114–118.  https://doi.org/10.1097/FBP.0b013e3283242f1aCrossRefPubMedGoogle Scholar
  36. 36.
    Roth BL, Sheffer DJ, Kroeze WK (2004) Magic shotguns versus magic bullets: selectively non-selective drugs for mood disorders and schizophrenia. Nat Rev Drug Discov 3:353–359.  https://doi.org/10.1038/nrd1346CrossRefPubMedGoogle Scholar
  37. 37.
    Bajorath J (2008) Computational analysis of ligand relationships within target families. Curr Opin Chem Biol 12:352–358.  https://doi.org/10.1016/j.cbpa.2008.01.044CrossRefPubMedGoogle Scholar
  38. 38.
    Oprea TI, Tropsha A, Faulon JL, Rintoul MD (2007) Systems chemical biology. Nat Chem Biol 3:447–450.  https://doi.org/10.1038/nchembio0807-447CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Newman DJ (2008) Natural products as leads to potential drugs: an old process or the new hope for drug discovery? J Med Chem 51:2589–2599.  https://doi.org/10.1021/jm0704090CrossRefPubMedGoogle Scholar
  40. 40.
    Siegel MG, Vieth M (2007) Drugs in other drugs: a new look at drugs as fragments. Drug Discov Today 12:71–79.  https://doi.org/10.1016/j.drudis.2006.11.011CrossRefPubMedGoogle Scholar
  41. 41.
    Young DW, Bender A, Hoyt J et al (2008) Integrating high-content screening and ligand-target prediction to identify mechanism of action. Nat Chem Biol 4:59–68.  https://doi.org/10.1038/nchembio.2007.53CrossRefPubMedGoogle Scholar
  42. 42.
    Wagner BK, Kitami T, Gilbert TJ et al (2008) Large-scale chemical dissection of mitochondrial function. Nat Biotechnol 26:343–351.  https://doi.org/10.1038/nbt1387CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Krejsa CM, Horvath D, Rogalski SL et al (2003) Predicting ADME properties and side effects: the BioPrint approach. Curr Opin Drug Discov Devel 6:470–480PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2020

Authors and Affiliations

  1. 1.Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF)University di PalermoPalermoItaly

Personalised recommendations