Advertisement

Enzymatic Bioautographic Methods

  • I. Ayelen Ramallo
  • Mario O. Salazar
  • Ricardo L. E. FurlanEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2089)

Abstract

Enzymatic bioautography enables the detection of enzyme inhibitors absorbed on a thin-layer chromatography plate. Therefore, it is an assay format that is particularly useful for the detection of inhibitors present in complex mixtures. The inhibition properties of compounds separated by thin-layer chromatography can be directly analyzed to produce an inhibition profile. Here, we describe the conditions to detect inhibitor of the enzymes xanthine oxidase and β-glucosidase immobilized on agar gel.

Key words

Bioautographic method Xanthine oxidase β-Glucosidase Immobilization in gel Bioguided isolation Control assay 

References

  1. 1.
    Cieśla ŁM, Waksmundzka-Hajnos M, Wojtunik KA, Hajnos M (2015) Thin-layer chromatography coupled with biological detection to screen natural mixtures for potential drug leads. Phytochem Lett 11:445–454CrossRefGoogle Scholar
  2. 2.
    Bräm S, Wolfram E (2017) Recent advances in effect-directed enzyme assays based on thin-layer chromatography. Phytochem Anal 28:74–86CrossRefGoogle Scholar
  3. 3.
    Pacher P, Nivorozhkin A, Szabó C (2006) Therapeutic effects of xanthine oxidase inhibitors: renaissance half a century after the discovery of allopurinol. Pharmacol Rev 58:87–114CrossRefGoogle Scholar
  4. 4.
    Choi HK, Mount DB, Reginato AM (2005) Pathogenesis of gout. Ann Intern Med 143:499–516CrossRefGoogle Scholar
  5. 5.
    Kim SC, Schneeweiss S, Choudhry N, Liu J, Glynn RJ, Solomon DH (2015) Effects of xanthine oxidase inhibitors on cardiovascular disease in patients with gout: a cohort study. Am J Med 128:653.e7–e653.e16CrossRefGoogle Scholar
  6. 6.
    Kim SY, Guevara JP, Kim KM, Choi HK, Heitjan DF, Albert DA (2009) Hyperuricemia and risk of stroke: a systematic review and meta-analysis. Arthritis Rheum 61:885–892CrossRefGoogle Scholar
  7. 7.
    Grayson PC, Kim SY, LaValley M, Choi HK (2010) Hyperuricemia and incident hypertension: a systematic review and meta-analysis. Arthritis Care Res (Hoboken) 63:102–110CrossRefGoogle Scholar
  8. 8.
    Kim SY, Guevara JP, Kim KM, Choi HK, Heitjan DF, Albert DA (2010) Hyperuricemia and coronary heart disease: a systematic review and meta-analysis. Arthritis Care Res (Hoboken) 62:170–180Google Scholar
  9. 9.
    Linas SL, Whittenburg D, Repine JE (1990) Role of xanthine oxidase in ischemia/reperfusion injury. Am J Phys 258:F711–F716Google Scholar
  10. 10.
    Doehner W, Jankowska EA, Springer J, Lainscak M, Anker SD (2016) Uric acid and xanthine oxidase in heart failure—emerging data and therapeutic implications. Int J Cardiol 213:15–19CrossRefGoogle Scholar
  11. 11.
    Kim GH, Kim JE, Rhie SJ, Yoon S (2015) The role of oxidative stress in neurodegenerative diseases. Exp Neurobiol 24:325–340CrossRefGoogle Scholar
  12. 12.
    Ramallo IA, Zacchino SA, Furlan RLE (2006) A rapid tlc autographic method for the detection of xanthine oxidase inhibitors and superoxide scavengers. Phytochem Anal 17:15–19CrossRefGoogle Scholar
  13. 13.
    Garcia P, Ramallo IA, Salazar MO, Furlan RLE (2016) Chemical diversification of essential oils, evaluation of complex mixtures and identification of a xanthine oxidase inhibitor. RSC Adv 6:57245–57252CrossRefGoogle Scholar
  14. 14.
    Ketudat Cairns JR (2010) β-Glucosidases. Cell Mol Life Sci 67:3389–3405CrossRefGoogle Scholar
  15. 15.
    Asano N (2003) Glycosidase inhibitors: update and perspectives on practical use. Glycobiology 13:93R–104RCrossRefGoogle Scholar
  16. 16.
    Borges de Melo E, da Silveira Gomes A, Carvalho I (2006) α- and β-Glucosidase inhibitors: chemical structure and biological activity. Tetrahedron 62:10277–10302CrossRefGoogle Scholar
  17. 17.
    Salazar MO, Furlan RLE (2007) A rapid tlc autographic method for the detection of glucosidase inhibitors. Phytochem Anal 18:209–212CrossRefGoogle Scholar
  18. 18.
    Salazar MO, Osella MI, Ramallo IA, Furlan RLE (2018) Nα-arylsulfonyl histamines as selective β-glucosidase inhibitors. RSC Adv 8:36209–36218CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2020

Authors and Affiliations

  • I. Ayelen Ramallo
    • 1
  • Mario O. Salazar
    • 1
  • Ricardo L. E. Furlan
    • 1
    Email author
  1. 1.Facultad de Ciencias BioquímicasUniversidad Nacional de Rosario-CONICETRosarioArgentina

Personalised recommendations