Advertisement

Enalos Cloud Platform: Nanoinformatics and Cheminformatics Tools

  • Dimitra-Danai Varsou
  • Andreas Tsoumanis
  • Antreas AfantitisEmail author
  • Georgia MelagrakiEmail author
Protocol
Part of the Methods in Pharmacology and Toxicology book series (MIPT)

Abstract

In this chapter, we present and discuss Enalos Cloud Platform designed and developed by NovaMechanics Ltd., as an easy-to-use portal to address a variety of challenges arising in the fields of cheminformatics and nanoinformatics. Enalos Cloud Platform also hosts predictive models as web services that can contribute to different aspects of material design and development, drug discovery, virtual screening of chemical substances, nanosafety, and the development of safe-by-design (nano)materials. All models included are developed and validated according to the OECD principles. The web services’ interface is carefully designed with the aim of being simple and user-friendly, to allow also users with no informatics background to easily use the models and benefit from the produced predictions and results. At the end of the chapter, we aspire that readers will perceive the functionalities and the efficiency of the available web services and how these could be integrated in drug discovery or material design projects.

Key words

Cheminformatics Nanoinformatics Enalos Cloud Platform Predictive models Virtual screening Safe-by-design 

Notes

Acknowledgments

This work was supported by the Cyprus Research Promotion Foundation, the Republic of Cyprus & the European Union under Grant agreement KOINA/ERASysAPP-ERA.NET/1113 and the European Union’s Horizon 2020 research and innovation programme under grant agreements No 691095 (NANOGENTOOLS) & 731032 (NanoCommons).

References

  1. 1.
    Willett P (2002) Chemistry plans a structural overhaul The rising tide of data being generated by high-throughput. Nature 419:4–7Google Scholar
  2. 2.
    Melagraki G, Afantitis A, Sarimveis H et al (2006) A novel RBF neural network training methodology to predict toxicity to Vibrio fischeri. Mol Divers 10:213–221CrossRefGoogle Scholar
  3. 3.
    Hong H, Xie Q, Ge W et al (2008) Mold2, molecular descriptors from 2D structures for chemoinformatics and toxicoinformatics. J Chem Inf Model 48:1337–1344CrossRefGoogle Scholar
  4. 4.
    Mauri A, Consonni V, Pavan M et al (2006) Dragon software: an easy approach to molecular descriptor calculations. Match 56:237–248Google Scholar
  5. 5.
    Leach AR, Gillet VJ (2007) An introduction to chemoinformatics. Springer Netherlands, DordrechtCrossRefGoogle Scholar
  6. 6.
    Melagraki G, Afantitis A, Sarimveis H et al (2010) In silico exploration for identifying structure-activity relationship of MEK inhibition and oral bioavailability for isothiazole derivatives. Chem Biol Drug Des 76:397CrossRefGoogle Scholar
  7. 7.
    Tetko IV, Maran U, Tropsha A (2017) Public (Q)SAR services, integrated modeling environments, and model repositories on the web: state of the art and perspectives for future development. Mol Inf 36:1–14CrossRefGoogle Scholar
  8. 8.
    Tropsha A (2010) Best practices for QSAR model development, validation, and exploitation. Mol Inf 29:476–488CrossRefGoogle Scholar
  9. 9.
    Gajewicz A, Rasulev B, Dinadayalane TC et al (2012) Advancing risk assessment of engineered nanomaterials: application of computational approaches. Adv Drug Deliv Rev 64:1663–1693CrossRefGoogle Scholar
  10. 10.
    Winkler DA, Mombelli E, Pietroiusti A, et al (2013) Applying quantitative structure – activity relationship approaches to nanotoxicology: current status and future potential.  https://doi.org/10.1016/j.tox.2012.11.005CrossRefGoogle Scholar
  11. 11.
    Gajewicz A, Jagiello K, Cronin MTD et al (2017) Addressing a bottle neck for regulation of nanomaterials: quantitative read-across (Nano-QRA) algorithm for cases when only limited data is available. Environ Sci Nano 4:346–358CrossRefGoogle Scholar
  12. 12.
    Varsou D-D, Afantitis A, Melagraki G, et al (2019) Read-across predictions of nanoparticle hazard endpoints: a mathematical optimization approach. Nanoscale Adv 1:3485–3498CrossRefGoogle Scholar
  13. 13.
    ECHA (2017) Appendix R. 6-1: recommendations for nanomaterials applicable to the guidance on QSARs and grouping 29Google Scholar
  14. 14.
    Schultz TW, Amcoff P, Berggren E et al (2015) A strategy for structuring and reporting a read-across prediction of toxicity. Regul Toxicol Pharmacol 72:586–601CrossRefGoogle Scholar
  15. 15.
    Varsou D-D, Melagraki G, Sarimveis H et al (2017) MouseTox: an online toxicity assessment tool for small molecules through Enalos Cloud platform. Food Chem Toxicol 110:83–93CrossRefGoogle Scholar
  16. 16.
    Varsou D-D, Afantitis A, Tsoumanis A et al (2019) A safe-by-design tool for functionalised nanomaterials through the Enalos Nanoinformatics Cloud platform. Nanoscale Adv 1:706CrossRefGoogle Scholar
  17. 17.
    Braga RC, Alves VM, Muratov EN et al (2017) Pred-skin: a fast and reliable web application to assess skin sensitization effect of chemicals. J Chem Inf Model 57:1013–1017CrossRefGoogle Scholar
  18. 18.
    Melagraki G, Afantitis A (2014) Enalos InSilicoNano platform: an online decision support tool for the design and virtual screening of nanoparticles. RSC Adv 4:50713–50725CrossRefGoogle Scholar
  19. 19.
    Afantitis A, Melagraki G, Tsoumanis A et al (2018) A nanoinformatics decision support tool for the virtual screening of gold nanoparticle cellular association using protein corona fingerprints. Nanotoxicology 12:1148CrossRefGoogle Scholar
  20. 20.
    KNIME KNIME Analytics Platform. https://www.knime.org/knime-analytics-platform
  21. 21.
    Abràmoff MD, Magalhães PJ, Ram SJ (2004) Image processing with ImageJ Second Edition. Biophotonics Int 11:36–42Google Scholar
  22. 22.
    Leonis G, Melagraki G, Afantitis A (2016) Open Source Chemoinformatics Software including KNIME Analytics Platform among a multitude. In: Leszczynski J (ed) Handbook of computational chemistry. Springer, DordrechtGoogle Scholar
  23. 23.
    The University of Waikato Weka 3: machine learning software in Java. https://www.cs.waikato.ac.nz/ml/weka/index.html
  24. 24.
    The R Project for statistical computing. https://www.r-project.org/
  25. 25.
    National Center for Biotechnology Information PubChem BioAssay Database, AID=651744. https://pubchem.ncbi.nlm.nih.gov/bioassay/651744
  26. 26.
    World Health Organisation WHO Chagas disease (American trypanosomiasis) Factsheet. http://www.who.int/mediacentre/factsheets/fs340/en/
  27. 27.
    U.S. Foof and Drug Administration, Mold2-Free software for fast-calculating descriptors from a two-dimensional chemical structure that is suitable for small and large datasets. https://www.fda.gov/science-research/bioinformatics-tools/mold2
  28. 28.
    Witten IH, Frank E, Hall MA (2011) Data mining practical machine learning tools and techniques, 3rd edn. Morgan Kaufmann Publishers, BurlingtonGoogle Scholar
  29. 29.
    Mech A, Rasmussen K, Jantunen P et al (2019) Insights into possibilities for grouping and read-across for nanomaterials in EU chemicals legislation. Nanotoxicology 13:119–141CrossRefGoogle Scholar
  30. 30.
    Oomen AG, Bleeker EAJ, Bos PMJ et al (2015) Grouping and read-across approaches for risk assessment of nanomaterials. Int J Environ Res Public Health 12:13415–13434CrossRefGoogle Scholar
  31. 31.
    Lamon L, Aschberger K, Asturiol D et al (2019) Grouping of nanomaterials to read-across hazard endpoints: a review. Nanotoxicology 13:100–118CrossRefGoogle Scholar
  32. 32.
    Witten IH, Frank E, Hall MA, Pal CJ (2016) Data mining: practical machine learning tools and techniques. Morgan Kaufmann, United StatesGoogle Scholar
  33. 33.
    Huluban R (2016) Practical guide-How to use and report (Q)SARs Practical Guide – How to use and report (Q)SARs, version 3.1. European Chemicals Agency, HelsinkiGoogle Scholar
  34. 34.
    Zhou H, Mu Q, Gao N et al (2008) A nano-combinatorial library strategy for the discovery of nanotubes with reduced protein-binding, cytotoxicity, and immune response. Nano Lett 8:859–865CrossRefGoogle Scholar
  35. 35.
    Chau YT, Yap CW (2012) Quantitative nanostructure-activity relationship modelling of nanoparticles. RSC Adv 2:8489–8496CrossRefGoogle Scholar
  36. 36.
    Toropov AA, Toropova AP, Puzyn T et al (2013) QSAR as a random event: modeling of nanoparticles uptake in PaCa2 cancer cells. Chemosphere 92:31–37CrossRefGoogle Scholar
  37. 37.
    Kar S, Gajewicz A, Puzyn T et al (2014) Nano-quantitative structure-activity relationship modeling using easily computable and interpretable descriptors for uptake of magnetofluorescent engineered nanoparticles in pancreatic cancer cells. Toxicol In Vitro 28:600–606CrossRefGoogle Scholar
  38. 38.
    Roy K, Ambure P (2016) The “double cross-validation” software tool for MLR QSAR model development. Chemom Intel Lab Syst, Elsevier, 159:108CrossRefGoogle Scholar
  39. 39.
    Vilanova O, Mittag JJ, Kelly PM et al (2016) Understanding the kinetics of protein-nanoparticle corona formation. ACS Nano 10:10842–10850CrossRefGoogle Scholar
  40. 40.
    Cedervall T, Lynch I, Lindman S et al (2007) Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci 104:2050–2055CrossRefGoogle Scholar
  41. 41.
    Walkey CD, Olsen JB, Song F et al (2014) Protein corona fingerprinting predicts the cellular interaction of gold and silver nanoparticles. ACS Nano 8:2439–2455CrossRefGoogle Scholar
  42. 42.
    Varsou D-D, Tsiliki G, Nymark P et al (2018) toxFlow: a web-based application for read-across toxicity prediction using omics and physicochemical data. J Chem Inf Model 58:543–549CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Nanoinformatics DepartmentNovamechanics LtdNicosiaCyprus

Personalised recommendations