Advertisement

VEGAHUB for Ecotoxicological QSAR Modeling

  • Emilio BenfenatiEmail author
  • Anna Lombardo
Protocol
Part of the Methods in Pharmacology and Toxicology book series (MIPT)

Abstract

VEGAHUB is a freely available platform, which offers tens of QSAR models for many endpoints of environmental and ecotoxicological interest. In the last years, other tools have been added, for read across and prioritization. These tools can be used in an integrated way.

An interesting feature of VEGAHUB is the possibility to evaluate the reliability of the assessment, in particular for the QSAR models and for the software for prioritization.

Key words

In silico models QSAR Read across Prioritization Screening VEGAHUB 

References

  1. 1.
    Virtual models for property evaluation of chemicals within a global architecture (VEGA). www.vegahub.eu
  2. 2.
    Benfenati E (ed) (2007) Quantitative Structure-Activity Relationships (QSAR) for pesticide regulatory purposes. Elsevier, AmsterdamGoogle Scholar
  3. 3.
  4. 4.
    Cassano A, Manganaro A, Martin TM et al (2010) The CAESAR models for developmental toxicity. Chem Cent J 4(Suppl 1):S4CrossRefGoogle Scholar
  5. 5.
    Fjodorova N, Vrachko M, Novich M et al (2010) New public QSAR model for carcinogenicity. Chem Cent J 4(Suppl 1):S3CrossRefGoogle Scholar
  6. 6.
    Lombardo A, Roncaglioni A, Boriani E et al (2010) Assessment and validation of the CAESAR predictive model for bioconcentration factor (BCF) in fish. Chem Cent J 4(Suppl 1):S1CrossRefGoogle Scholar
  7. 7.
    Benfenati E (2010) The CAESAR project for in silico models for the REACH legislation. Chem Cent J 4(Suppl 1):I1CrossRefGoogle Scholar
  8. 8.
    Chaudhry Q, Piclin N, Cotterill J et al (2010) Global QSAR models of skin sensitisers for regulatory purposes. Chem Cent J 4(Suppl 1):S5CrossRefGoogle Scholar
  9. 9.
    Ferrari T, Gini G (2010) An open source multistep model to predict mutagenicity from statistical analysis and relevant structural alerts. Chem Cent J 4(Suppl 1):S2CrossRefGoogle Scholar
  10. 10.
  11. 11.
  12. 12.
  13. 13.
    Alternative Non-Testing methods Assessed for REACH Substances (ANTARES), LIFE08 ENV/IT/000435. http://www.antares-life.eu/
  14. 14.
    Chemical Assessment according to Legislation Enhancing the In silico Documentation and Safe use (CALEIDOS), LIFE11 ENV/IT/000295. http://www.life-caleidos.eu/
  15. 15.
    Promoting the use of in silico methods in industry (LIFE PROSIL), LIFE12 ENV/IT/000154. http://www.life-prosil.eu/
  16. 16.
    Integrating VEGA. ToxRead, MERLIN-Expo and ERICA in a platform for risk assessment and substitution for risky substances (LIFE-VERMEER), LIFE16ENV/IT7000167. https://www.life-vermeer.eu/
  17. 17.
    Concerting experimental data and in silico models for REACH (LIFE CONCERT REACH). LIFE17 GIE/IT/000461. http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=6791
  18. 18.
    Gini G, Franchi AM, Manganaro A et al (2014) ToxRead: a tool to assist in read across and its use to assess mutagenicity of chemicals. SAR QSAR Environ Res 25:999–1011CrossRefGoogle Scholar
  19. 19.
    Hardy A, Benford D, Halldorsson T et al (2017) Guidance on the use of the weight of evidence approach in scientific assessments. EFSA J 15:4971.  https://doi.org/10.2903/j.efsa.2017.4971CrossRefGoogle Scholar
  20. 20.
    Floris M, Manganaro A, Nicolotti O et al (2014) A generalizable definition of chemical similarity for read-across. J Chem 6:39CrossRefGoogle Scholar
  21. 21.
    Benfenati E, Belli M, Borges T et al (2016) Results of a round-robin exercise on read-across. SAR QSAR Environ Res 27:371–384CrossRefGoogle Scholar
  22. 22.
  23. 23.
    Pizzo F, Lombardo A, Manganaro A et al (2016) Integrated in silico strategy for PBT assessment and prioritization under REACH. Environ Res 151:478–492CrossRefGoogle Scholar
  24. 24.
  25. 25.
    Lombardo A, Pizzo F, Benfenati E et al (2014) A new in silico classification model for ready biodegradability, based on molecular fragments. Chemosphere 108:10–16CrossRefGoogle Scholar
  26. 26.
    Pizzo F, Lombardo A, Brandt M et al (2016) A new integrated in silico strategy for the assessment and prioritization of persistence of chemicals under REACH. Environ Int 88:50–260CrossRefGoogle Scholar
  27. 27.
    Ferrari T, Lombardo A, Benfenati E (2018) QSARpy: a new flexible algorithm to generate QSAR models based on dissimilarities. The log Kow case study. Sci Total Environ 637–638:1158–1165CrossRefGoogle Scholar
  28. 28.
  29. 29.
    Toropov AA, Toropova AP, Marzo M et al (2017) QSAR models for predicting acute toxicity of pesticides in rainbow trout using the CORAL software and EFSA’s OpenFoodTox database. Environ Toxicol Pharmacol 53:158–163CrossRefGoogle Scholar
  30. 30.
    Toropov AA, Toropova AP, Cappelli CI, Benfenati E (2015) CORAL: model for octanol/water partition coefficient. Fluid Phase Equilib 397:44–49CrossRefGoogle Scholar
  31. 31.
    Toropova AP, Toropov AA, Martyanov SE et al (2013) CORAL: Monte Carlo method as a tool for the prediction of the bioconcentration factor of industrial pollutants. Mol Inform 32:145–154CrossRefGoogle Scholar
  32. 32.
    Toropov AA, Toropova AP, Benfenati E et al (2013) CORAL: QSPR model of water solubility based on local and global SMILES attributes. Chemosphere 90:877–880CrossRefGoogle Scholar
  33. 33.
    Toropova AP, Toropov AA, Benfenati E et al (2012) The minimum number of “eccentric” substances: quantitative criterion to estimate the reliability of a QSPR. A case of water solubility. Chem Phys Lett 542:134–137CrossRefGoogle Scholar
  34. 34.
    Toropov AA, Toropova AP, Lombardo A et al (2012) CORAL: the prediction of biodegradation of organic compounds with optimal SMILES-based descriptors. Cent Eur J Chem 10:1042–1048Google Scholar
  35. 35.
    Toropova AP, Toropov AA, Lombardo A et al (2012) CORAL: QSAR models for acute toxicity in fathead minnow (Pimephales promelas). J Comput Chem 33:1218–1223PubMedGoogle Scholar
  36. 36.
    Toropova AP, Toropov AA, Benfenati E, Gini G (2012) QSAR models for toxicity of organic substances to Daphnia magna built up by using the CORAL freeware. Chem Biol Drug Des 79:332–338CrossRefGoogle Scholar
  37. 37.
    Toropov AA, Toropova AP, Gonella Diaza R et al (2012) SMILES-based optimal descriptors: QSAR modeling of estrogen receptor binding affinity by correlation balance. Struct Chem 23:529–544CrossRefGoogle Scholar
  38. 38.
    Toropova AP, Toropov AA, Martyanov SE et al (2012) CORAL: QSAR modeling of toxicity of organic chemicals towards Daphnia magna. Chemom Intel Lab Syst 110:177–181CrossRefGoogle Scholar
  39. 39.
  40. 40.
  41. 41.
  42. 42.
    Collaborative Modeling Project for Androgen Receptor (AR) Activity (CoMPARA). https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=341701&Lab=NCCT

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Environmental HealthMilanItaly

Personalised recommendations