Ecotoxicological QSAR Modeling of Nanomaterials: Methods in 3D-QSARs and Combined Docking Studies for Carbon Nanostructures

  • Bakhtiyor RasulevEmail author
Part of the Methods in Pharmacology and Toxicology book series (MIPT)


One of the main approaches in cheminformatics, so-called a quantitative structure-activity relationship (QSAR) approach, nowadays plays an important role in lead structure optimization, as well as in prediction of various physicochemical properties, biological activity, and environmental toxicology. One of the recent developments in QSAR approaches for nanostructures is a three-dimensional QSAR. For the last two decades, 3D-QSAR has already been successfully applied to various datasets, especially of enzyme and receptor ligands. The application of 3D-QSAR for nanostructured materials is still at early stage. Often, 3D-QSAR studies are going together with protein-ligand docking studies, and this combination works synergistically, improving the accuracy of prediction. Carbon nanostructures, such as fullerenes, and carbon nanotubes are nanomaterials with specific properties that make them useful in pharmacological applications. In this methodological review, we outline recent advances in development and application of 3D-QSAR and protein-ligand docking approaches in the studies of nanostructured materials, such as fullerenes and carbon nanotubes.

Key words

3D-QSAR Carbon nanostructure Nanomaterials Docking Toxicity Biological activity 


  1. 1.
    Hansch C, Leo A, Hoekman D, Leo A (1995) Exploring QSAR. American Chemical Society, Washington, DCGoogle Scholar
  2. 2.
    Kubinyi H (1997) QSAR and 3D QSAR in drug design part 1: methodology. Drug Discov Today 2(11):457–467CrossRefGoogle Scholar
  3. 3.
    Kubinyi H (1997) QSAR and 3D QSAR in drug design part 2: applications and problems. Drug Discov Today 2(12):538–546CrossRefGoogle Scholar
  4. 4.
    Klebe G, Abraham U, Mietzner T (1994) Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J Med Chem 37(24):4130–4146PubMedCrossRefGoogle Scholar
  5. 5.
    Karelson M, Lobanov VS, Katritzky AR (1996) Quantum-chemical descriptors in QSAR/QSPR studies. Chem Rev 96(3):1027–1044PubMedCrossRefGoogle Scholar
  6. 6.
    Isayev O, Rasulev B, Gorb L, Leszczynski J (2006) Structure-toxicity relationships of nitroaromatic compounds. Mol Divers 10(2):233–245PubMedCrossRefGoogle Scholar
  7. 7.
    Rasulev B, Toropov AA, Hamme AT II, Leszczynski J (2008) Multiple linear regression analysis and optimal descriptors: predicting the cholesteryl ester transfer protein inhibition activity. QSAR Comb Sci 27(5):595–606CrossRefGoogle Scholar
  8. 8.
    Rasulev B, Kušić H, Leszczynska D, Leszczynski J, Koprivanac N (2010) QSAR modeling of acute toxicity on mammals caused by aromatic compounds: the case study using oral LD50 for rats. J Environ Monitor 12(5):1037–1044CrossRefGoogle Scholar
  9. 9.
    Turabekova MA, Rasulev B, Dzhakhangirov FN, Leszczynska D, Leszczynski J (2010) Aconitum and Delphinium alkaloids of curare-like activity. QSAR analysis and molecular docking of alkaloids into AChBP. Eur J Med Chem 45(9):3885–3894PubMedCrossRefGoogle Scholar
  10. 10.
    Veber DF, Johnson SR, Cheng H-Y, Smith BR, Ward KW, Kopple KD (2002) Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 45(12):2615–2623CrossRefGoogle Scholar
  11. 11.
    Turabekova MA, Rasulev B, Dzhakhangirov FN, Salikhov SI (2008) Aconitum and Delphinium alkaloids. “Drug-likeness” descriptors related to toxic mode of action. Environ Toxicol Pharmacol 25:310–320PubMedCrossRefGoogle Scholar
  12. 12.
    Toropov AA, Toropova AP, Rasulev B, Benfenati E, Gini G, Leszczynska D, Leszczynski J (2008) CORAL: binary classifications (active/inactive) for liver-related adverse effects of drugs. Curr Drug Saf 7(4):257–261CrossRefGoogle Scholar
  13. 13.
    Ragno R, Artico M, De Martino G, La Regina G, Coluccia A, Di Pasquali A, Silvestri R (2005) Docking and 3-D QSAR studies on indolyl aryl sulfones. Binding mode exploration at the HIV-1 reverse transcriptase non-nucleoside binding site and design of highly active N-(2-hydroxyethyl) carboxamide and N-(2-hydroxyethyl) carbohydrazide derivatives. J Med Chem 48(1):213–223PubMedCrossRefGoogle Scholar
  14. 14.
    Hu R, Barbault F, Delamar M, Zhang R (2009) Receptor-and ligand-based 3D-QAR study for a series of non-nucleoside HIV-1 reverse transcriptase inhibitors. Bioorg Med Chem 17(6):2400–2409PubMedCrossRefGoogle Scholar
  15. 15.
    Sun J, Cai S, Yan N, Mei H (2010) Docking and 3D-QSAR studies of influenza neuraminidase inhibitors using three-dimensional holographic vector of atomic interaction field analysis. Eur J Med Chem 45(3):1008–1014PubMedCrossRefGoogle Scholar
  16. 16.
    Araújo JQ, de Brito MA, Hoelz LVB, de Alencastro RB, Castro HC, Rodrigues CR, Albuquerque MG (2011) Receptor-dependent (RD) 3D-QSAR approach of a series of benzylpiperidine inhibitors of human acetylcholinesterase (HuAChE). Eur J Med Chem 46(1):39–51PubMedCrossRefGoogle Scholar
  17. 17.
    Ahmed L, Rasulev B, Turabekova M, Leszczynska D, Leszczynski J (2013) Receptor-and ligand-based study of fullerene analogues: comprehensive computational approach including quantum-chemical, QSAR and molecular docking simulations. Org Biomol Chem 11(35):5798–5808PubMedCrossRefGoogle Scholar
  18. 18.
    Jagiello K, Grzonkowska M, Swirog M, Ahmed L, Rasulev B, Avramopoulos A, Papadopoulos MG, Leszczynski J, Puzyn T (2016) Advantages and limitations of classic and 3D QSAR approaches in nano-QSAR studies based on biological activity of fullerene derivatives. J Nanopart Res 18(9):256PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Wise M, Cramer RD, Smith D, Exman I (1983) Progress in three-dimensional drug design: the use of real-time colour graphics and computer postulation of bioactive molecules in DYLOMMS. Elsevier, AmsterdamGoogle Scholar
  20. 20.
    Cramer R, Bunce JD (1987) The DYLOMMS method: initial results from a comparative study of approaches to 3D QSAR. In: Hadzi D, Jerman-Blazic B (eds) QSAR in drug design and toxicology. Elsevier Science, Amsterdam, pp 3–12Google Scholar
  21. 21.
    Cramer RD, Patterson DE, Bunce JD (1988) Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 110(18):5959–5967PubMedCrossRefGoogle Scholar
  22. 22.
    Clark M, Cramer RD, Jones DM, Patterson DE, Simeroth PE (1990) Comparative molecular field analysis (CoMFA). 2. Toward its use with 3D-structural databases. Tetrahedron Comput Methodol 3(1):47–59CrossRefGoogle Scholar
  23. 23.
    Lill MA (2007) Multi-dimensional QSAR in drug discovery. Drug Discov Today 12(23):1013–1017PubMedCrossRefGoogle Scholar
  24. 24.
    Kim KH, Greco G, Novellino E (1998) A critical review of recent CoMFA applications. In: Kubinyi H, Folkers G, Martin YC (eds) 3D QSAR in drug design. Springer, Dordrecht, pp 257–315Google Scholar
  25. 25.
    Todeschini R, Gramatica P (1998) 3D QSAR in drug design, vol 2. Kluwer/ESCOM, Dordrecht, pp 355–360CrossRefGoogle Scholar
  26. 26.
    Podlogar BL, Ferguson DM (2000) QSAR and CoMFA: a perspective on the practical application to drug discovery. Drug Des Discov 17(1):4PubMedGoogle Scholar
  27. 27.
    Tripos (2006) SYBYL, version 7.3, 2006, St. LouisGoogle Scholar
  28. 28.
    Patel PD, Patel MR, Kaushik-Basu N, Talele TT (2008) 3D QSAR and molecular docking studies of benzimidazole derivatives as hepatitis C virus NS5B polymerase inhibitors. J Chem Inf Model 48(1):42–55PubMedCrossRefGoogle Scholar
  29. 29.
    Oprea TI, Matter H (2004) Integrating virtual screening in lead discovery. Curr Opin Chem Biol 8(4):349–358PubMedCrossRefGoogle Scholar
  30. 30.
    Ahmed L, Rasulev B, Kar S, Krupa P, Mozolewska M, Leszczynski J (2017) Inhibitors or toxins? Large library target-specific screening of fullerene-based nanoparticles for drug design purpose. Nanoscale 9(29):10263–10276PubMedCrossRefGoogle Scholar
  31. 31.
    Klebe G (2006) Virtual ligand screening: strategies, perspectives and limitations. Drug Discov Today 11(13):580–594PubMedCrossRefGoogle Scholar
  32. 32.
    Perola E (2006) Minimizing false positives in kinase virtual screens. Proteins: Struc Func Bioinf 64(2):422–435CrossRefGoogle Scholar
  33. 33.
    Pajeva IK, Globisch C, Wiese M (2009) Combined pharmacophore modeling, docking, and 3D QSAR studies of ABCB1 and ABCC1 transporter inhibitors. ChemMedChem 4(11):1883–1896PubMedCrossRefGoogle Scholar
  34. 34.
    Yang S-Y (2010) Pharmacophore modeling and applications in drug discovery: challenges and recent advances. Drug Discov Today 15(11):444–450PubMedCrossRefGoogle Scholar
  35. 35.
    Goodford PJ (1985) A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J Med Chem 28(7):849–857PubMedCrossRefGoogle Scholar
  36. 36.
    Kim KH (2001) Thermodynamic aspects of hydrophobicity and biological QSAR. J Comput Aid Mol Des 15(4):367–380CrossRefGoogle Scholar
  37. 37.
    Hopfinger AJ (1980) A QSAR investigation of dihydrofolate reductase inhibition by Baker triazines based upon molecular shape analysis. J Am Chem Soc 102(24):7196–7206CrossRefGoogle Scholar
  38. 38.
    Doweyko AM (1988) The hypothetical active site lattice. An approach to modelling active sites from data on inhibitor molecules. J Med Chem 31(7):1396–1406PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Walters DE, Hinds RM (1994) Genetically evolved receptor models: a computational approach to construction of receptor models. J Med Chem 37(16):2527–2536PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Pastor M, Cruciani G, McLay I, Pickett S, Clementi S (2000) GRid-INdependent descriptors (GRIND): a novel class of alignment-independent three-dimensional molecular descriptors. J Med Chem 43:3233–3243PubMedCrossRefGoogle Scholar
  41. 41.
    Fontaine F, Pastor M, Zamora I, Sanz F (2005) Anchor-GRIND: filling the gap between standard 3D QSAR and the GRid-INdependent descriptors. J Med Chem 48(7):2687–2694PubMedCrossRefGoogle Scholar
  42. 42.
    Fontaine F, Pastor M, Sanz F (2004) Incorporating molecular shape into the alignment-free GRid-INdependent descriptors. J Med Chem 47(11):2805–2815PubMedCrossRefGoogle Scholar
  43. 43.
    Silverman B, Platt DE (1996) Comparative molecular moment analysis (CoMMA): 3D-QSAR without molecular superposition. J Med Chem 39(11):2129–2140PubMedCrossRefGoogle Scholar
  44. 44.
    Ortiz AR, Pisabarro MT, Gago F, Wade RC (1995) Prediction of drug binding affinities by comparative binding energy analysis. J Med Chem 38(14):2681–2691PubMedCrossRefGoogle Scholar
  45. 45.
    Polanski J, Gieleciak R, Bak A (2002) The comparative molecular surface analysis (CoMSA)-a nongrid 3D QSAR method by a coupled neural network and PLS system: predicting pKa values of benzoic and alkanoic acids. J Chem Inf Comput Sci 42(2):184–191PubMedCrossRefGoogle Scholar
  46. 46.
    Polanski J, Bak A, Gieleciak R, Magdziarz T (2006) Modeling robust QSAR. J Chem Inf Model 46(6):2310–2318PubMedCrossRefGoogle Scholar
  47. 47.
    Datar PA, Khedkar SA, Malde AK, Coutinho EC (2006) Comparative residue interaction analysis (CoRIA): a 3D-QSAR approach to explore the binding contributions of active site residues with ligands. J Comput Aid Mol Des 20(6):343–360CrossRefGoogle Scholar
  48. 48.
    Dhaked DK, Verma J, Saran A, Coutinho EC (2009) Exploring the binding of HIV-1 integrase inhibitors by comparative residue interaction analysis (CoRIA). J Mol Model 15(3):233–245PubMedCrossRefGoogle Scholar
  49. 49.
    Robinson DD, Winn PJ, Lyne PD, Richards WG (1999) Self-organizing molecular field analysis: a tool for structure-activity studies. J Med Chem 42(4):573–583PubMedCrossRefGoogle Scholar
  50. 50.
    Zhou P, Tian F, Li Z (2007) Three-dimensional holographic vector of atomic interaction field (3D-HoVAIF). Chemom Intell Lab Syst 87(1):88–94CrossRefGoogle Scholar
  51. 51.
    Ajmani S, Jadhav K, Kulkarni SA (2006) Three-dimensional QSAR using the k-nearest neighbor method and its interpretation. J Chem Inf Model 46(1):24–31PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Baskin II, Zhokhova NI (2013) The continuous molecular fields approach to building 3D-QSAR models. J Comput Aid Mol Des 27(5):427–442CrossRefGoogle Scholar
  53. 53.
    Zhokhova NI, Baskin II, Bakhronov DK, Palyulin VA, Zefirov NS (2009) Method of continuous molecular fields in the search for quantitative structure-activity relationships. Dokl Chem 429(1):273–276CrossRefGoogle Scholar
  54. 54.
    Dixon SL, Smondyrev AM, Knoll EH, Rao SN, Shaw DE, Friesner RA (2006) PHASE: a new engine for pharmacophore perception, 3D QSAR model development and 3D database screening. 1. Methodology and preliminary results. J Comput Aid Mol Des 20:647–671CrossRefGoogle Scholar
  55. 55.
    Totrov M (2008) Atomic property fields: generalized 3D pharmacophoric potential for automated ligand superposition, pharmacophore elucidation and 3D QSAR. Chem Biol Drug Des 71(1):15–27PubMedCrossRefGoogle Scholar
  56. 56.
    Li H, Sutter J, Hoffmann R (2000) HypoGen: an automated system for generating 3D predictive pharmacophore models. In: Gﺴner OF (ed) Pharmacophore perception, development, and use in drug design (pp. 171–189). International University Line, La Jolla, Calif, USAGoogle Scholar
  57. 57.
    Evans DA, Doman TN, Thorner DA, Bodkin MJ (2007) 3D QSAR methods: phase and catalyst compared. J Chem Inf Model 47(3):1248–1257PubMedCrossRefGoogle Scholar
  58. 58.
    Durdagi S, Mavromoustakos T, Chronakis N, Papadopoulos MG (2008a) Computational design of novel fullerene analogues as potential HIV-1 PR inhibitors: analysis of the binding interactions between fullerene inhibitors and HIV-1 PR residues using 3D QSAR, molecular docking and molecular dynamics simulations. Bioorg Med Chem 16(23):9957–9974PubMedCrossRefGoogle Scholar
  59. 59.
    Durdagi S, Mavromoustakos T, Papadopoulos MG (2008b) 3D QSAR CoMFA/CoMSIA, molecular docking and molecular dynamics studies of fullerene-based HIV-1 PR inhibitors. Bioorg Med Chem Lett 18(23):6283–6289PubMedCrossRefGoogle Scholar
  60. 60.
    Durdagi S, Supuran CT, Strom TA, Doostdar N, Kumar MK, Barron AR, Mavromoustakos T, Papadopoulos MG (2009) In silico drug screening approach for the design of magic bullets: a successful example with anti-HIV fullerene derivatized amino acids. J Chem Inf Model 49(5):1139–1143PubMedCrossRefGoogle Scholar
  61. 61.
    Tzoupis H, Leonis G, Durdagi S, Mouchlis V, Mavromoustakos T, Papadopoulos MG (2011) Binding of novel fullerene inhibitors to HIV-1 protease: insight through molecular dynamics and molecular mechanics Poisson–Boltzmann surface area calculations. J Comput Aid Mol Des 25(10):959–976CrossRefGoogle Scholar
  62. 62.
    Calvaresi M, Zerbetto F (2010) Baiting proteins with C60. ACS Nano 4(4):2283–2299PubMedCrossRefGoogle Scholar
  63. 63.
    Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ (2005) PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acid Res 33:W363–W367PubMedCrossRefGoogle Scholar
  64. 64.
    Calvaresi M, Zerbetto F (2011) Fullerene sorting proteins. Nanoscale 3(7):2873–2881PubMedCrossRefGoogle Scholar
  65. 65.
    Ghasemi JB, Salahinejad M, Rofouei MK (2013) Alignment independent 3D-QSAR modeling of fullerene (C60) solubility in different organic solvents. Fuller Nanotub Car N 21(5):367–380CrossRefGoogle Scholar
  66. 66.
    Rofouei MK, Salahinejad M, Ghasemi JB (2014) An alignment independent 3D-QSAR modeling of dispersibility of single-walled carbon nanotubes in different organic solvents. Fuller Nanotub Car N 22(7):605–617CrossRefGoogle Scholar
  67. 67.
    Esposito EX, Hopfinger AJ, Shao CY, Su BH, Chen SZ, Tseng YJ (2015) Exploring possible mechanisms of action for the nanotoxicity and protein binding of decorated nanotubes: interpretation of physicochemical properties from optimal QSAR models. Toxicol Appl Pharmacol 288(1):52–62PubMedCrossRefGoogle Scholar
  68. 68.
    Saikia N, Rajkhowa S, Deka RC (2013) Density functional and molecular docking studies towards investigating the role of single-wall carbon nanotubes as nanocarrier for loading and delivery of pyrazinamide antitubercular drug onto pncA protein. J Comput Aid Mol Des 27(3):257–276CrossRefGoogle Scholar
  69. 69.
    Turabekova M, Rasulev B, Theodore M, Jackman J, Leszczynska D, Leszczynski J (2014) Immunotoxicity of nanoparticles: a computational study suggests that CNTs and C 60 fullerenes might be recognized as pathogens by Toll-like receptors. Nanoscale 6(7):3488–3495PubMedCrossRefGoogle Scholar
  70. 70.
    Mozolewska MA, Krupa P, Rasulev B, Liwo A, Leszczynski J (2014) Preliminary studies of interaction between nanotubes and toll-like receptors. Task Quarterly 18(4):351–355Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Coatings and Polymeric MaterialsNorth Dakota State UniversityFargoUSA

Personalised recommendations